• Title/Summary/Keyword: Flux pinning effect

Search Result 53, Processing Time 0.028 seconds

Effect of Metal Oxide of Ceramic Superconductor for Neutron beam Irradiation (중성자 조사용 전기도체의 첨가물 효과)

  • Lee, Sang-Heon;Choi, Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.429-432
    • /
    • 2008
  • Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of superconducting materials at liquid nitrogen temperature. The improvement of the critical current can be achieved by forming the nano size defect working as a flux pinning center inside the superconductor. In this paper, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of superconductor.

Effect of Metal Oxide on the Superconductivity of YBCO

  • Lee, Sang-Heon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1241-1242
    • /
    • 2006
  • Electromagnetic properties of $CeO_2$ doped and undoped YBaCuO superconductors were evaluated to investigate the effect of pinning center on the magnetization and magnetic shielding. The variation $\DeltaM$ with doping was maximum for 3% doping and decrease with further doping. The magnetic shielding was evaluated by measuring the induced voltage in secondary coil and the voltage initially set to 0.5V, decreased to 0.17V and 0.28V respectively for the undoped and 3% $CeO_2$ doped sample. The much less change in the induced voltage for the 3% doped sample is attributed to the increased flux shielding by shielding vortex current. The $CeO_2$ was converted to fine $BaCeO_3$ particles which were trapped in YBaCuO superconductor during the reaction sintering. The trapped fine particles, $BaCeO_3$ may be acted as a flux pinning center.

  • PDF

Magnetic Suspension Effect of BiPbSrCaCuO Superconductor (Bi계 초전도체의 Magnetic Suspension)

  • 이상헌
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.101-103
    • /
    • 2001
  • Suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing Ag$_2$O It has been cleared that Ag$_2$O acts as pinning center which plays an important role to the suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

  • PDF

Electromagnetic Characteristics of BiPbSrCaCuO Superconductor (BiPbSrCaCuO계 초전도체의 전기자기적 특성)

  • Lee, Sang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.69-70
    • /
    • 2002
  • Suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing $Ag_2O$. It has been cleared that $Ag_2O$ acts as pinning center which plays an important role to the suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

  • PDF

Superconductivity of HTS REBCO coated conductors with multi-superconducting layers

  • Ye Rim, Lee; Kyu Jeong, Song;Gwan Tae, Kim;Sang Soo, Oh;Hong Soo, Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.29-35
    • /
    • 2022
  • We fabricated MHOS (multi-HTS layers on one substrate) high-temperature superconducting (HTS) REBCO conductors using HTS REBCO coated conductor (CC) A-specimen, which induces an artificial magnetic flux pinning effect, and HTS REBCO CC B-specimen, that does not induce this effect. The superconducting magnetic properties of the fabricated MHOS conductors were examined by measuring their magnetic moment m(H) curves using a physical property measurement system (QD PPMS-14). The critical current density (Jc) characteristics of our four-layered MHOS HTS REBCO conductor specimens such as BAAB, BBBB, and AAAA were lower than those of their two-layered and three-layered counterparts. At a temperature T of 30 K the magnetic flux pinning physical indicator δ values (obtained from the relationship Jc ∝ H) of the three-layer ABA (δ = 0.35) and two-layer AB (δ = 0.43) specimens were found to be significantly lower than those of the four-layer ABBA (δ = 0.51), BAAB (δ = 0.60), AAAA (δ = 0.78) and BBBB (δ = 0.81) structures.

The Effect of the Addition of BZO Nanopowder in the YBCO PLD Targets on the Flux Pinning Properties of BZO-YBCO Thin Film (YBCO PLD 타겟에 BZO 나노분말 첨가에 따른 PLD-YBCO 박막의 자속고정 효과)

  • Song, K.J.;Ko, R.K.;Lee, Y.S.;Park, Y.M.;Yang, J.S.;Kim, H.S.;Ha, H.S.;Ha, D.W.;Kim, S.W.;Oh, S.S.;Kim, D.J.;Park, C.;Yoo, S.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.20-21
    • /
    • 2005
  • [ $BaZrO_3$ ], nanopowder was added to YBCO powder to make ($BazrO_3)_x(YBCO)_{(100-x)mol.-%}$ ($BZO_x$-YBCO) ($0{\leq}x{\leq}10$) composite targets fur pulsed laser deposition of superconducting layer in order to investigate the effect of the addition of BZO nanopowder in the YBCO target on the flux pinning properties of $BZO_x$-YBCO thin films. All the $BZO_x$-YBCO thin films were grown on single crystal STO substrate under similar conditions in the PLD chamber. The effect of YBCO targets doped with BZO on the flux pinning properties of $BZO_x$-YBCO thin films has been investigated comparatively. The isothermal magnetizations M(H) of the films were measured at temperatures between 5 and 80 K in fields up to 5 T, employing a PPMS. The optimal amount of BZO nanopowders in $BZO_x$-YBCO thin films to obtain the strongest flux pinning effects at high magnetic fields is about 6 mol.-%.

  • PDF

Magnetic Suspension Effect of BiPbSrCaCuO Superconductor (Bi계 초전도제의 자기부양효과)

  • 이상헌
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.535-538
    • /
    • 2002
  • Suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing $Ag_2()$. It has been clear that $Ag_2()$ acts as pinning center which plays an important role to the suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet, has been investigated. It has been concluded that the suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

Magnetic Suspension Effect of Oxide Superconductor (산화물 초전도체의 자기효과)

  • Lee, Sangl-Heon;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.199-202
    • /
    • 2004
  • Suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing $Ag_2O$. It has been c1eared that $Ag_2O$ acts as pinning center which plays an important role to the suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

  • PDF

Magnetic Suspension Effect of BiPbSrCaCuO Superconductor (Bi계 초전도체의 Magnetic Suspension)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.101-103
    • /
    • 2001
  • Suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing $Ag_{2}O$ It has been cleared that $Ag_{2}O$ acts as pinning center which plays an important role to the suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

  • PDF

Fishing Effect of BiPbSrCaCuO Superconductor (BiPbSrCaCuO 초전도체의 Fishing 효과)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.177-179
    • /
    • 2004
  • Suspension effect has been studied by using superconductor of BiPbSrCaCuO ceramics containing $Ag_2O$. It has been cleared that $Ag_2O$ acts as pinning center which plays an important role to the suspension effect. Magnetic repulsive force which affects a superconductor located in magnetic flux from toroidal magnet has been investigated. It has been concluded that the suspension effect arises from the interaction between the pinning effect and the diamagnetic effect.

  • PDF