• Title/Summary/Keyword: Flux method

Search Result 2,888, Processing Time 0.031 seconds

Radiation Exposure of an Astronaut subject to Various Space Radiation Environments and Shielding Conditions (다양한 우주방사선 환경과 차폐 조건에서 우주인이 받는 방사선 피폭량)

  • Chae, Myeong-Seon;Chung, Bum-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.1038-1048
    • /
    • 2010
  • Radiation exposures of an astronaut during the space travels to the International Space Station(ISS) of the Soyuz and the Moon of the Apollo, were calculated considering the altitude, boarding time, period of stay, kinds of spaceships and space suits. The calculated radiation exposures decrease dramatically according to the thickness of the shielding by the wall of the spaceships and by the space suits. For the space travel to the ISS of Soyuz at Low Earth orbit, the thickness of the spaceship required to optimally reduce the radiation exposure is 3 cm. For the Extravehicle Mobility Unit(EMU) the exposures are minimized at 4 cm of the aluminized Mylar and 5 cm of the Demron, respectively. The aluminized Mylar showed better radiation shielding than the Demron which contains the high Z materials. The radiation exposures of an astronaut were $4.2\times10^{-6}$ Sv for the ISS travel and $4.3\times10^{-5}$ Sv for the Moon explore. The high concentration of the high energy proton flux at the surface of the Moon results in high radiation exposure. The calculation scheme and results of this study can be used in the design of the shielding performance of a spaceship and space suits.

A Experimental Study on Vibration Attenuation of a Plate with Eddy Current Damper (와전류 감쇠기를 적용한 평판의 진동 저감에 관한 실험적 연구)

  • Pyeon, Bong-Do;Kim, Jong-Hyuk;Bae, Jae-Sung;Hwang, Jai-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.355-361
    • /
    • 2020
  • Among these satellites, low - orbit small satellites with military characteristics require multi - target observation, and demand for high-resolution photographs and images is increasing. Fast maneuverability is the most important factor for high-resolution images and multi - target observations. However, in the case of a small satellites, it is possible to perform the attitude maneuver if it has high speed, but the residual vibration occurs when the attitude maneuver is completed and the next attitude maneuver is completed. In this study, to verify the vibration characteristics of the plate generated after attitude maneuver, an experimental fixture for simulating the attitude maneuver was fabricated and tested. In addition, Eddy Current Damper (ECD) using Eddy Current Brake system (ECB) is proposed as a passive damping method using permanent magnet to reduce vibration. A mathematical model was established to apply ECD and it was experimentally implemented according to the magnetic flux density and the air gap of the permanent magnet. One plate of four solar panels (plate) was specified, the residual vibration reduction performance after the test was verified experimentally.

Design and Control of Ultra-precision Dual Stage with Air bearings and Voice coil motor for nm scanning system (나노 정밀도 스캐닝 용 공기베어링과 보이스 코일 모터의 초정밀 이중 스테이지 설계 및 제어)

  • Kim K.H.;Choi Y.M.;Kim J.J.;Lee M.G.;Lee S.W.;Gweon D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1883-1886
    • /
    • 2005
  • In this paper, a decoupled dual servo (DDS) stage for ultra-precision scanning system with large working range is introduced. In general, dual servo systems consist of a fine stage for short range and a coarse stage for long range. The proposed DDS also consists of a $XY\theta$ fine stage for handling and carrying workpieces and one axis coarse stage. Its coarse stage consists of air bearing guide system and a coreless linear motor with force ripple. The fine has four voice coil motors(VCM) as its actuator. According to a VCM's nature, there are no mechanical connections between coils and magnetic circuits. Moreover, VCM doesn't have force ripples due to imperfections of commutation components of linear motor systems - currents and flux densities. However, due to the VCM's mechanical constraints the working range of the fine is about $25mm^2$. To break that hurdle, the coarse stage with linear motors is used to move the fine about 500mm. Because of the above reasons, the proposed DDS can achieve higher precision scanning than other stages with only one servo. With MATLAB's Sequential Quadratic Programming (SQP), the VCMs are optimally designed for the highest force under conditions and constraints such as thermal dissipations due to its coil, its size, and so on. And for their movements without any frictions, guide systems of the DDS are composed of air bearings. To get precisely their positions, a linear scale with 5nm resolution are used for the coarse stage's motion and three plane mirror laser interferometers with 5nm for the fine's $XY\theta$ motions. With them, on scanning the two stages have same trajectories. The control algorithm is named Parallel method. The embodied ultra-precision scanning system has sub 100nm following error and in-positioning stability.

  • PDF

Separation and Purification of Bio Gas by Hollow Fiber Gas Separation Membrane Module (중공사형 기체분리막 모듈을 이용한 바이오가스의 분리 및 정제)

  • Koh, Hyung-Chul;Ha, Seong-Yong;Woo, Seung-Moon;Nam, Sang-Yong;Lee, Byung-Seong;Lee, Chung-Seop;Choi, Whee-Moon
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • Hollow fiber membrane using CTA polymers were prepared by the phase separation method for the separation and purification of biogas and the hollow fiber gas separation membrane modules with the effective surface area of 0.17 $m^2$ were prepared. The pure gas permeation properties of membrane modules for methane, oxygen and carbon dioxide were measured. The permeance of $CO_2$ and $CH_4$were 0.46 GPU and 18.52 GPU, respectively, therefore, the high $CO_2$/$CH_4$ selectivity of 40.4 was obtained. The separation and purification test for 4 different simulated mixed gases were carried out after the pure gas test and the gas concentration and flux of the permeate at the various stage-cut were measured from the 1 stage, 2 stage, and 3 stage cascade of membrane modules. In the 1 stage test, the concentration of $CH_4$ increased as the increase of the stage-cut, while the $CH_4$ recovery efficiency ratio decreased. In the 2 stage test, the $CH_4$ recovery efficiency ratio increased compared to the 1 stage. The 3 stage test was employed to reduce the loss of $CH_4$ in biogas and the result showed less than 5% of $CH_4$ recovery loss.

Estimation of Vegetation Carbon Budget in South Korea using Ecosystem Model and Spatio-temporal Environmental Information (생태계 모형과 시공간 환경정보를 이용한 우리나라 식생 탄소 수지 추정)

  • Yoo, Seong-Jin;Lee, Woo-Kyun;Son, Yo-Whan;Ito, Akihiko
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.145-157
    • /
    • 2012
  • In this study, we simulated a carbon flux model, so called Vegetation Integrated Simulator for Trace gases (VISIT) using Spatio-temporal Environmental Information, to estimate carbon budgets of vegetation ecosystem in South Korea. As results of the simulation, the model estimated that the annual-average gross primary production (GPP), net primary production (NPP) for 10 years were $91.89Tg\;C\;year^{-1}$, and $40.16Tg\;C\;year^{-1}$, respectively. The model also estimated the vegetation ecosystems in South Korea as a net carbon sink, with a value of $3.51Tg\;C\;year^{-1}$ during the simulation period. Comparing with the anthropogenic emission of South Korea, vegetation ecosystems offsets 3.3% of human emissions as a net carbon sink in 2007. To estimate the carbon budget more accurately, it is important to prepare reliable input datasets. And also, model parameters should be calibrated through comparing with various independent method. The result of this study, however, would be helpful for devising ecosystem management strategies that may help to mitigate global climate change.

A Study about Effectiveness and Usefulness of a FEM Slug Test Model (유한 요소기법을 이용한 Slug시험 모델의 타당성 및 유용성 연구)

  • 한혜정;최종근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Slug tests are the most widely used field method for quantification of hydraulic conductivity of porous media. Well recovery is affected by well casing, borehole radii, screened length, hydraulic conductivity, and specific storage of porous media. In this study, a new slug tests model was developed through finite element approximation and the validity and usefulness of the model were tested in various ways. Water level fluctuation in a well under slug test and cons-equent groundwater flow in the surrounding porous medium were appropriately coupled through estimation of well-flux using an iteration technique. Numerical accuracy of the model was verified using the Cooper et al. (1967) solution. The model has advantages in simulations for monitored slug tests, partial penetration, and inclusion of storage factor. Volume coverage of slug tests is significantly affected by storage factor. Magnitude and speed of propagation of head changes from a well increases as storage factor becomes low. It will be beneficial to use type curves of monitored head transients in the surrounding porous formation for estimation of specific storage. As the vertical component of groundwater flow is enhanced, the influence of storage factor on well recovery decreases. For a radial-vertical flow around a partially penetrated well, deviations between hydraulic estimates by various methods and data selection of recovery curve are negligible on practical purposes, whereas the deviations are somewhat significant for a radial flow.

  • PDF

A study on the curing characteristics of multi-concentrating UV-LED Curable Coating (다중 집광성 UV-LED 경화형 코팅의 경화특성에 관한 연구)

  • Jung, Chan-Gwon;Kim, Beom-Su;Park, Dae-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.339-345
    • /
    • 2018
  • We investigated the curing properties of cured coatings for a multi-focal UV-LED. The coatings are for LEDs that operate at multiple UV wavelengths, unlike conventional single-wavelength UV-LEDs. Using UV-LED light sources with wavelengths of 365, 395, 420, and 450 nm, we analyzed the optical characteristics such as the direction of light flux and light source. We also analyzed the curing characteristics at each UV-LED wavelength to optimize the LED for composite wavelengths. The curing performance state was predicted through computer simulation for when the multiple wavelengths of UV light sources are superimposed, and then actual LEDs were designed and fabricated. To improve the internal high-speed curing, a multi-spot module was fabricated, in which each LED is condensed, and multiple wavelengths are synthesized and condensed at the same position. The adhesive strength, surface hardness, and internal hardness of the curing agent were tested by varying the wavelength combination conditions. The surface hardening and internal hardening were compared and analyzed using a hardness tester and FT-IR analyzer. As a result, the characteristics of the surface and internal hardness were improved by a multi-spot method in which four wavelengths were overlapped in a UV-LED rather than a single wavelength.

Control of Membrane Fouling in Submerged Membrane Bioreactor(MBR) using Air Scouring (침지형 생물 반응기 공정에서 플럭스 향상을 위한 공기 세척 효과에 관한 연구)

  • Shin, Dong-Hwan;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.948-954
    • /
    • 2008
  • Membrane bioreactor(MBR) processes have been widely applied to wastewater treatment for last decades due to its excellent capability of solid-liquid separation. However, membrane fouling was considered as a limiting factor in wide application of the MBR process. Excess aeration into membrane surface is a common way to control membrane fouling in most MBR. However, the excessively supplied air is easily dissipated in the reactor, which results in consuming energy and thus, it should be modified for effective control of membrane fouling. In this study, cylindrical tube was introduced to MBR in order to use the supplied air effectively. Membrane fibers were immersed into the cylindrical tube. This makes the supplied air non-dissipated in the reactor so that membrane fouling could be controlled economically. Two different air supplying method was employed and compared each other; nozzle and porous diffuser which were located just beneath the membrane module. Transmembrane pressure(TMP) was monitored as a function of airflow rate, flux, and ratio of the tube area and cross-sectioned area of membrane fibers(A$_m$/A$_t$). Flow rate of air and liquid was regulated to obtain slug flow in the cylindrical tube. With the same flow of air supply, nozzle was more effective for controlling membrane fouling than porous diffuser. Accumulation of sludge was observed in the tube with the nozzle, if the air was not suppled sufficiently. Reduction of membrane fouling was dependent upon the ratio, A$_m$/A$_t$. For diffuser, membrane fouling was minimized when A$_m$/A$_t$ was 0.27, but 0.55 for nozzle.

Preparation of PVdF/GO Composite Nanofibrous Flat Membrane and its Permeation Characteristics in Activated Sludge (PVdF/GO 복합 나노섬유 평막의 제조 및 활성슬러지 내 투과특성)

  • Won, In Hye;Jang, Wongi;Chung, Kun Yong;Byun, Hongsik
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In this study the nanofiber was prepared by electrospinning method with polyvinylidene fluoride (PVdF) and a completely dispersed solution of graphene oxide (GO) in the mixed solvent of dimethylformamide (DMF) and acetone. The $0.4{\mu}m$ pore size microfiltration flat membrane was made by increasing layers of the PVdF/GO composite nanofiber. Also, transmembrane pressure (TMP) was measured in order to evaluate fouling of the PVdF/GO composite membrane which was introduced GO reducing biological fouling with the intrinsic antibacterial characteristics. The permeate experiments were carried out simultaneously for the PVdF/GO and commercialized CPVC (chlorinated polyvinyl chloride) flat membranes with $0.01m^2$ effective area in the activated sludge solution of MLSS 4,500 mg/L. TMP of PVdF/GO membrane decreased up to 79% lower than that of CPVC for $10L/m^2{\cdot}h$ permeate flux without air supply. Also, for the case of run/stop operational mode, TMP of PVdF/GO membrane decreased up to 69% lower than that of CPVC for $10L/m^2{\cdot}h$.

Hybrid Water Treatment of Tubular Alumina MF and Polypropylene Beads Coated with Photocatalyst: Effect of Nitrogen Back-flushing Period and Time (관형 알루미나 정밀여과와 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 질소 역세척 주기와 시간의 영향)

  • Park, Jin Yong;Choi, Min Jee;Ma, Jun Gyu
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.226-236
    • /
    • 2013
  • The effect of $N_2$ back-flushing period (FT) and time (BT) was compared with the previous result used PES (polyethersulfone) beads loaded with titanium dioxide photocatalyst in hybrid process of alumina microfiltration and PP (polypropylene) beads coated with photocatalyst in viewpoints of membrane fouling resistance ($R_f$), permeate flux (J), and total permeate volume ($V_T$). The reason of nitrogen back-washing instead of the general air back-washing method is to minimize the possible effect of oxygen included in air on water quality analysis. As decreasing FT, $R_f$ decreased and J and $V_T$ increased. Treatment efficiency of dissolved organic matters (DOM) was 82.0%, which was the higher than 78.0% of the PES beads result. This means that PP beads coated with photocatalyst was the more effective than PES beads loaded with photo-catalyst in the DOM removal. As increasing BT, the final $R_f$ decreased and the final J increased, but $V_T$ was the maximum at BT 15 sec. The average treatment efficiency of turbidity did not have any trend as changing BT. As BT increasing from 6 sec to 30 sec, the treatment efficiency of DOM increased 11.8%, which was a little higher than the result of PES beads.