• Title/Summary/Keyword: Flux method

Search Result 2,888, Processing Time 0.031 seconds

Comparison of DTC between two-level and three-level inverters for LV propulsion electric motor in ship (선박 추진용 저압 전동기에 대한 2레벨 및 3레벨 인버터의 직접토크제어 비교)

  • Ki-Tak RYU;Jong-Phil KIM;Yun-Hyung LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • In compliance with environmental regulations at sea and the introduction of unmanned autonomous ships, electric propulsion ships are garnering significant attention. Induction machines used as propulsion electric motor (PEM) have maintenance advantages, but speed control is very complicated and difficult. One of the most commonly used techniques for speed control is DTC (direct torque control). DTC is simple in the reference frame transformation and the stator flux calculation. Meanwhile, two-level and three-level voltage source inverters (VSI) are predominantly used. The three-level VSI has more flexibility in voltage space vector selection compared to the two-level VSI. In this paper, speed is controlled using the DTC method based on the specifications of the PEM. The speed controller employs a PI controller with anti-windup functionality. In addition, the characteristics of the two-level VSI and three-level VSI are compared under identical conditions. It was confirmed through simulation that proper control of speed and torque has been achieved. In particular, the torque ripple was small and control was possible with a low DC voltage at low speed in the three-level VSI. The study confirmed that the application of DTC, using a three-level VSI, contributes to enhancing the system's response performance.

Overview of separate effect and integral system tests on the passive containment cooling system of SMART100

  • Jin-Hwa Yang;Tae-Hwan Ahn;Hong Hyun Son;Jin Su Kwon;Hwang Bae;Hyun-Sik Park;Kyoung-Ho Kang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1066-1080
    • /
    • 2024
  • SMART100 has a containment pressure and radioactivity suppression system (CPRSS) for passive containment cooling system (PCCS). This prevents overheating and over-pressurization of a containment through direct contact condensation in an in-containment refueling water storage tank (IRWST) and wall condensation in a CPRSS heat exchanger (CHX) in an emergency cool-down tank (ECT). The Korea Atomic Energy Research Institute (KAERI) constructed scaled-down test facilities, SISTA1 and SISTA2, for the thermal-hydraulic validation of the SMART100 CPRSS. Three separate effect tests were performed using SISTA1 to confirm the heat removal characteristics of SMART100 CPRSS. When the low mass flux steam with or without non-condensable gas is released into an IRWST, the conditions for mitigation of the chugging phenomenon were identified, and the physical variables were quantified by the 3D reconstruction method. The local behavior of the non-condensable gas was measured after condensation inside heat exchanger using a traverse system. Stratification of non-condensable gas occurred in large tank of the natural circulation loop. SISTA2 was used to simulate a small break loss-of-coolant accident (SBLCOA) transient. Since the test apparatus was a metal tank, compensations of initial heat transfer to the material and effect of heat loss during long-term operation were important for simulating cooling performance of SMART100 CPRSS. The pressure of SMART100 CPRSS was maintained below the design limit for 3 days even under sufficiently conservative conditions of an SBLOCA transient.

Preparation and Oxygen Permeation Properties of La0.07Sr0.3Co0.2Fe0.8O3-δ Membrane (La0.07Sr0.3Co0.2Fe0.8O3-δ 분리막의 제조 및 산소투과 특성)

  • Park, Jung Hoon;Kim, Jong Pyo;Baek, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.477-483
    • /
    • 2008
  • $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ oxide was synthesized by a citrate method and a typical dense membrane of perovskite oxide has been prepared using as-prepared powder by pressing and sintering at $1300^{\circ}C$. Precursor of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ prepared by citrate method was investigated by TGA and XRD. Metal-citrate complex in precursor was decomposed into perovskite oxide in the temperature range of $260{\sim}410^{\circ}C$ but XRD results showed $SrCO_3$ existed as impurity at less than $900^{\circ}C$. Electrical conductivity of membrane increased with increasing temperature but then decreased over $700^{\circ}C$ in air atmosphere ($Po_2=0.2atm$) and $600^{\circ}C$ in He atmosphere ($Po_2=0.01atm$) respectively due to oxygen loss from the crystal lattice. The oxygen permeation flux increased with increasing temperature and maximum oxygen permeation flux of $La_{0.7}Sr_{0.3}Co_{0.2}Fe_{0.8}O_{3-{\delta}$ membrane with 1.6 mm thickness was about $0.31cm^3/cm^2{\cdot}min$ at $950^{\circ}C$. The activation energy for oxygen permeation was 88.4 kJ/mol in the temperature range of $750{\sim}950^{\circ}C$. Perovskite structure of membrane was not changed after permeation test of 40 h and the membrane was stable without secondary phase change with 0.3 mol Sr addition.

Sapflux Measurement Database Using Granier's Heat Dissipation Method and Heat Pulse Method (수액류 측정 데이터베이스: 그래니어(Granier) 센서 열손실탐침법(Heat Dissipation Method)과 열파동법(Heat Pulse Method)을 이용한 수액류 측정)

  • Lee, Minsu;Park, Juhan;Cho, Sungsik;Moon, Minkyu;Ryu, Daun;Lee, Hoontaek;Lee, Hojin;Kim, Sookyung;Kim, Taekyung;Byeon, Siyeon;Jeon, Jihyun;Bhusal, Narayan;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.327-339
    • /
    • 2020
  • Transpiration is the movement of water into the atmosphere through leaf stomata of plant, and it accounts for more than half of evapotranspiration from the land surface. The measurements of transpiration could be conducted in various ways including eddy covariance and water balance method etc. However, the transpiration measurements of individual trees are necessary to quantify and compare the water use of each species and individual component within stands. For the measurement of the transpiration by individual tree, the thermometric methods such as heat dissipation and heat pulse methods are widely used. However, it is difficult and labor consuming to maintain the transpiration measurements of individual trees in a wide range area and especially for long-term experiment. Therefore, the sharing of sapflow data through database should be useful to promote the studies on transpiration and water balance for large spatial scale. In this paper, we present sap flow database, which have Granier type sap flux data from 18 Korean pine (Pinus koraiensis) since 2011 and 16 (Quercus aliena) since 2013 in Mt.Taehwa Seoul National University forest and 18 needle fir (Abies holophylla), seven (Quercus serrata), three (Carpinus laxiflora and C. cordata each since 2013 in Gwangneung. In addition, the database includes the sapling transpiration of nine species (Prunus sargentii, Larix kaempferii, Quercus accutisima, Pinus densiflora, Fraxinus rhynchophylla, Chamecypans obtuse, P. koraiensis, Betulla platyphylla, A. holophylla, Pinus thunbergii), which were measured using heat pulse method since 2018. We believe this is the first database to share the sapflux data in Rep. of Korea, and we wish our database to be used by other researchers and contribute a variety of researches in this field.

Synthesis of YBa2Cu3O7-y Powder using a Powder Reaction Method and Fabrication of the Bulk Superconductors (분말 반응법에 의한 YBa2Cu3O7-y 합성과 벌크 초전도체의 제조)

  • Jeon, Young Ju;Park, Seung Yeon;You, Byung Youn;Park, Soon-Dong;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.142-147
    • /
    • 2013
  • $YBa_2Cu_3O_{7-y}$ (Y123) powders for the fabrication of bulk superconductors were synthesized by the powder reaction method using $Y_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The raw powders were weighed to the cation ratio of Y:Ba:Cu=1:2:3, mixed and calcined at $880^{\circ}C-930^{\circ}C$ in air with intermediate repeated crushing steps. It was found that the formation of Y123 powder was more sensitive to reaction temperature than reaction time. The calcined Y123 powder and a mixture of (Y123 + 0.25 mole $Y_2O_3$ + 1 wt.% $CeO_2$, $Y_{1.5}Ba_2Cu_3O_x$ (Y1.5)) were used as raw powders for the fabrication of poly-grain or single grain superconductors. The superconducting transition temperature ($T_{c,onset}$) of the sintered Y123 sample was 91 K and the transition width was as large as 11 K, whereas the $T_{c,onset}$ of the melt-grown Y1.5 sample was 90.5 K and the transition width was 3.5 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Y123 was 700 $A/cm^2$, whereas the $J_c$ of the top-seeded melt growth (TSMG) processed Y1.5 sample was $3.2{\times}10^4\;A/cm^2$. The magnetic flux density (H) at 77 K of the TSMG-processed Y123 and Y1.5 sample showed the 0.53 kG and 2.45 kG, respectively, which are 15% and 71% of the applied magnetic field of 3.5 kG. The high H value of the TSMG-processed Y1.5 sample is attributed to the formation of the larger superconducting grain with fine Y211 dispersion.

Estimation of Potential Evapotranspiration using LAI (LAI를 고려한 잠재증발산량 추정)

  • Kim, Joo-Hun;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.1-13
    • /
    • 2005
  • In the process of a hydrology circulation, evapotranspiration is considered a very important factor to build a plan for the development of water resources and to operate water resources system. This study purposes to estimate daily potential evapotranspiration quantity in consideration of energy factors of the surface by using spatial information such as Landsat TM (ETM+) data, DEM and Landcover. Kyounan-cheon, Han River is selected as a target area, and landcover is divided by vegetation and non-vegetation covered area. Penman-Monteith equation which considers leaf-area index is used to estimate potential evapotranspiration quantity of vegetation covered area. The combination method (energy burget and aerodynamic method) is used in non-vegetation covered area. Among the input data for estimating potential evapotranspiration, NDVI, SR and Albedo is formed by Landsat, TM and ETM+ from 1986 through 2002. ground heat flux is estimated by using NDVI distribution map, LAI distribution map is drawn by using SR distribution map. The result of estimation shows that the average potential evapotranspiration in the whole basin is about 1.8-3.2mm/day per each cell. THe results of estimating potential evapotranspiration quantity by each landcover are as follows; water surface 3.6-4.9mm/day, city 1.4-3.1mm/day, bareland 1.4-3.5mm/day, grassland 1.7-3.7mm/day, forest 1.7-3.0mm/day and farmland 1.8-3.6mm/day. The potential evapotranspiration quantity is underestimated in comparison with observed evaporation data by evaporation pan, but it is considered that it has physical propriety.

  • PDF

Development of a Multichannel Eddy Current Testing Instrument(II) (다중채널 와전류탐상검사 장치 개발(II))

  • Lee, Hee-Jong;Nam, Min-Woo;Cho, Chan-Hee;Yoo, Hyun-Joo;Kim, In-Chel
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.552-559
    • /
    • 2011
  • Recently, the eddy current testing(ECT), alternating current field testing, magnetic flux leakage testing and remote field testing have been used as a nondestructive evaluation method based on the electromagnetic induction phenomenon. The eddy current testing is now widely accepted as a NDE method for the heat exchanger tube in the electric power industry, chemical, shipbuilding, and military. The ECT system mainly consists of the synthesizer module, analog module, analog-to-digital converter, power supplier, and data acquisition and analysis program. In the previous study, the synthesizer module and the analog module which is essential to the ECT system were primarily developed, and in this study the data acquisition and analysis program were developed. The operation system for this program is based on the Windows 7, and optimized for the Korean users, and the specific feature of this program using setup wizard enables inspector to make a setup easily for acquisition and analysis of ECT data. In this paper, the configuration and functions of eddy current data acquisition and analysis program will be introduced.

Heat Balance Characteristics and Water Use Efficiency of Soybean Community (콩군낙(群落)의 열수지특성(熱收支特性)과 건물(乾物)로의 물이용효율(利用效率))

  • Lee, Yang-Soo;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.94-99
    • /
    • 1990
  • A field experiment was conducted to study seasonal evapotranspiration above soybean canopy and its relationship with dry matter production by the Bowen ratio-energy balance method. The soybean "Paldalkong" was sown with the space of $47{\times}10cm$ at Suwon on May 27, 1988. The daily net radiation ranged from 59 to 76 percents of the total shortwave radiation under cloudless conditions, which was lower than cloud overcast condition with recorded 63 to 83 percents. The latent heat flux under overcast condition was sometimes larger than the sum of net radiation, implying transportation of energy by advection of ambient air. The linear relationship was obtained between daily or daytime net radiation and evapotranspiration. The evapotranspiration calculated by Bowen ratio-energy balance method was about 150 percent of class A pan evaporation during the growing season. The total solar radiation from June 20 to August 27 was $1043MJm^{-2}$. The 85 percent of the total shortwave radiation was used for evaporative heat. The dry matter production within the period was $836gm^{-2}$ and the water use efficiency was $2.31gDM\;kg^{-1}\;H_2O$.

  • PDF

Estimation of Net Biome Production in a Barley-Rice Double Cropping Paddy Field of Gimje, Korea (김제 보리-벼 이모작지에서의 순 생물상생산량의 추정)

  • Shim, Kyo-Moon;Min, Sung-Hyun;Kim, Yong-Seok;Jung, Myung-Pyo;Choi, In-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.173-181
    • /
    • 2015
  • Fluxes of carbon dioxide ($CO_2$) were measured above crop canopy using the Eddy Covariance (EC) method, and emission rate of methane ($CH_4$) was measured using Automatic Open/Close Chamber (AOCC) method during the 2012-2013 barley and rice growing season in a barley-rice double cropping field of Gimje, Korea. The net ecosystem exchange (NEE) of $CO_2$ in the paddy field was analyzed to be affected by crop growth (biomass, LAI, etc.) and environment (air temperature, solar radiation, etc.) factors. On the other hand, the emission rate of $CH_4$ was estimated to be affected by water management (soil condition). NEE of $CO_2$ in barley, rice and fallow period was -100.2, -374.1 and $+41.2g\;C\;m^{-2}$, respectively, and $CH_4$ emission in barley and rice period was 0.2 and $17.3g\;C\;m^{-2}$, respectively. When considering only $CO_2$, the barley-rice double cropping ecosystem was estimated as a carbon sink ($-433.0g\;C\;m^{-2}$). However, after considering the harvested crop biomass ($+600.3g\;C\;m^{-2}$) and $CH_4$ emission ($+17.5g\;C\;m^{-2}$), it turned into a carbon source ($+184.7g\;C\;m^{-2}$).

Intercomparison of Chamber Methods for Soil Respiration Measurement in a Phytotron System (식물 환경 조절 시스템에서의 토양 호흡 관측 챔버법의 비교 실험)

  • Chae Namyi;Kim Rae-Hyun;Hwang Taehee;Suh Sang-Uk;Lee Jae-Seok;Son Yowhan;Lee Dowon;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.107-114
    • /
    • 2005
  • Soil CO₂ emission is one of the primary components in carbon balance of terrestrial ecosystems. In soil CO₂ flux measurements, chamber method is currently the most common technique. Prior to compare or synthesize the data collected from different chamber methods, potential biases must be quantified for each measurement system. We have conducted an intercomparison experiment among four closed dynamic chamber systems and an automatic open-closed chamber system in a temperature-controlled phytotron. Due to the disturbed CO₂ concentrations inside the phytotron during the measurements with closed dynamic chambers and the changes in soil water content, the interpretation of the data was difficult to quantify the biases of individual methods. However, the experiment provided not only valuable information on the performance characteristics of the five instruments to varying soil temperature and CO₂ concentration but also useful insights for better designs and strategy for future intercomparison in a controlled environment.