• 제목/요약/키워드: Flux gradient

검색결과 222건 처리시간 0.024초

정사각형 계의 전도-복사열전달에서 정반사면의 영향 (Effects of a Specularly Reflecting Wall in an Infinite Square Duct on Conductive-Radiative Heat Transfer)

  • 변기홍;한동천
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1451-1458
    • /
    • 2001
  • The effects of a specularly reflecting surface on the wall heat flux and medium temperature distribution are studied. The system is an infinite square duct enclosing an absorbing and emitting medium. The walls are opaque, and black or gray. The walls emit diffusely but reflect diffusely or speculary. Heat is transferred by the combined effect of conduction and radiation. The radiative heat transfer is analyzed using direct discrete-ordinates method. The parameters under study are conduction, to radiation parameter, optical depth, wall emissivity, and reflection characteristics. The specular reflection and diffuse reflection show sizeable differences when the conduction to radiation parameter is less than around 0.01. The differences appear only either on the side wall heat flux or on the medium temperature profiles for the range of this study. The differences on the side wall heat flux are observed for optical thickness less than around 0.1 However the differences on the medium temperate profiles are found for optical thickness greater than around 1. The difference increase with increasing reflectance. The specular reflection increases the well heat flux gradient along the side wall.

경사가 있는 지형의 거칠기 아층에서 풍향시어와 운동량 플럭스의 특성 (Characteristics of Wind Direction Shear and Momentum Fluxes within Roughness Sublayer over Sloping Terrain)

  • 이영희
    • 대기
    • /
    • 제25권4호
    • /
    • pp.591-600
    • /
    • 2015
  • We have analyzed wind and eddy covariance data collected within roughness sublayer over sloping terrain. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree. This study examines the directional wind shear for data collected at three levels in the lowest 10 m in the roughness sublayer. The wind direction shear is caused by drag of roughness element and terrain-induced motions at this site. Small directional shear occurs when wind speed at 10 m is strong and wind direction at 10 m is southerly which is the same direction as upslope flow near surface at this site during daytime. Correlation between vertical shear of lateral momentum and lateral momentum flux is smaller over steeply sloped surface compared to mildly sloped surface and lateral momentum flux is not down-gradient over steeply sloped surface. Quadrant analysis shows that the relative contribution of four quadrants to momentum flux depends on both surface slope and wind direction shear.

Where is the coronal loop plasma located, within a flux rope or between flux ropes?

  • 임다예;최광선;이시백
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.66.3-67
    • /
    • 2015
  • Without scrutinizing reflection, the plasma comprising a coronal loop is usually regarded to reside within a flux rope. This picture seems to have been adopted from laboratory plasma pinches, in which a plasma of high density and pressure is confined in the vicinity of the flux rope axis by magnetic tension and magnetic pressure of the concave inward magnetic field. Such a configuration, in which the plasma pressure gradient and the field line curvature vector are almost parallel, however, is known to be vulnerable to ballooning instabilities (to which belong interchange instabilities as a subset). In coronal loops, however, ideal MHD (magnetohydrodynamic) ballooning instabilities are impeded by a very small field line curvature and the line-tying condition. We, therefore, focus on non-ideal (resistive) effects in this study. The footpoints of coronal loops are constantly under random motions of convective scales, which twist individual loop strands quite randomly. The loop strands with the axial current of the same direction tend to coalesce by magnetic reconnection. In this reconnection process, the plasma in the loop system is redistributed in such a way that a smaller potential energy of the system is attained. We have performed numerical MHD simulations to investigate the plasma redistribution in coalescence of many small flux ropes. Our results clearly show that the redistributed plasma is more accumulated between flux ropes rather than near the magnetic axes of flux ropes. The Joule heating, however, creates a different temperature distribution than the density distribution. Our study may give a hint of which part of magnetic field we are looking to in an observation.

  • PDF

Evaluation of DMS Flux and Its Conversion to SO(sub)2 in Tropical ACE 1 Marine Boundary Layer

  • Shon, Zang-Ho;Taekyung Yoon;Kim, Jungkwon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권3호
    • /
    • pp.139-148
    • /
    • 2000
  • A mass balance/photochemical modeling approach was used to evaluate the sea-to-air dimethyl sulfide (DMS) fluxes in tropical regions and part of the Southern Ocean. The flux determinations were based on 10 airborne observations by ACE 1 transit flights (i.e., Flights 4-9 and 29-32). The DMS flux values for the tropical regions ranged from 1.0 to 7.4 $\mu$mole/$m^2$/day with an average estimate of 4.2$\pm$2.3 $\mu$mole/$m^2$/day. The seasonal variations in the DMS flux predicted for the equatorial Pacific Ocean based on atmospheric DMS measurements were not entirely consistent with those derived from seawater DMS measurements were not entirely consistent with those derived from seawater DMS measurements reported in previous literature. Inhomogeneities in the DMS flux field were found to cause significant shifts in the atmospheric DMS levels even in the same sampling location. Accordingly, no definitive statement can be made at this stage regarding systematic differences or agreements in the DMS flux estimates from the two approaches. Moreover, this study strongly suggests that DMS oxidation is the most likely dominant source of SO$_2$in tropical regions, which is also supported by another set of compiled observations. Finally, these SO$_2$observations indicate that, when significant data was available for both the boundary and buffer layers, the vertical SO$_2$gradient between these two zones was primarily negative.

  • PDF

Statistical Analysis on the trapping boundary of outer radiation belt during geosynchronous electron flux dropout : THEMIS observation

  • 황정아;이대영;김경찬;최은진;신대규;김진희;조정희
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.90.2-90.2
    • /
    • 2012
  • Geosynchronous electron flux dropouts are most likely due to fast drift loss of the particles to the magnetopause (or equivalently, the "magnetopause shadowing effect"). A possible effect related to the drift loss is the radial diffusion of PSD due to gradient of PSD set by the drift loss effect at an outer L region. This possibly implies that the drift loss can affect the flux levels even inside the trapping boundary. We recently investigated the details of such diffusion process by solving the diffusion equation with a set of initial and boundary conditions set by the drift loss. Motivated by the simulation work, we have examined observationally the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropouts. For this work, we have first identified a list of geosynchronous flux dropout events for 2007-2010 from GOES satellite electron measurements and solar wind pressures observed by ACE satellite. We have then used the electron data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements to investigate the particle fluxes. The five THEMIS spacecraft sufficiently cover the inner magnetospheric regions near the equatorial plane and thus provide us with data of much higher spatial resolution. In this paper, we report the results of our investigations on the energy spectrum and pitch angle distribution near trapping boundary during the geosynchronous flux dropout events and discuss implications on the effects of the drift loss on the flux levels at inner L regions.

  • PDF

냉장고 진공단열재 성능진단을 위한 열유속계 위치에 관한 연구 (A Study on the Heat Flux Meter Location for the Performance Test of a Refrigerator Vacuum Insulation Panel)

  • 하지수
    • 설비공학논문집
    • /
    • 제25권8호
    • /
    • pp.471-476
    • /
    • 2013
  • The present study has been carried out to elucidate the optimal method for the performance test of a refrigerator vacuum insulation panel (VIP), by using numerical heat transfer analysis. Three locations of heat flux meter have been tested, for deriving the best test method to clarify the normal or the abnormal condition of the vacuum insulation panel in a refrigerator. The first location of the heat flux sensor is at the same place as the heater, the second one is at the nearby side location of the heater and the third one is at the opposite side location of heater in the refrigerator. The heat flux and $1/q^{{\prime}{\prime}^2}$ or $q^{{\prime}{\prime}^4}$ were calculated for the cases with the normal VIP, and with the abnormal VIP, and their differences analyzed. From the present study, the first and the second method had a mere difference characteristics of heat flux and $1/q^{{\prime}{\prime}^2}$ or $q^{{\prime}{\prime}^4}$, between the cases with the normal or the abnormal VIP. The magnitude of the heat flux after 300sec had a great difference between the cases with the normal or abnormal VIP for the third method, and it could be considered the most optimal method to test the performance of a refrigerator vacuum insulation panel.

비균일 대칭성 열Flux인 수직 사각 닥트내의 층류조합대류 열전달 효과 (Laminar Convective Heat Transfer in Vertical Square Duct with Variational Symmetric Heat Flux)

  • 김시영
    • 수산해양기술연구
    • /
    • 제18권1호
    • /
    • pp.47-53
    • /
    • 1982
  • 본 논문은 비균일대칭성 열Flux인 수직사각 Duct내의 층류조합대류 열전달 효과를 해석하기 위하여 그 유동의 특성 지배 방정식 및 비균일 열Flux의 경계조건을 무차원화 시켜 이를 Galerkin's 방법에 의해 유한요소식으로 정식화하고 이에 대하여 R 하(a) 수 및 압력구배 변수에 대해서 Duct 내의 온도분포, 속도분포 및 Nusselt 수의 값을 계산하였고 온도분포를 열 Flux가 일정 및 없는 경우와 비교하였으며 또 닥트내의 열전달 특성을 R 하(a) 수, 응력구배변수 및 Corner에 따른 변호경향을 조사하였다. 그 결과 1. 본 해석의 경계벽 온도분포 계산치와 유효자료들과의 비교에서 열 Flux가 일정 또는 없는 경우는 그 값이 일치하였다. 2. 닥트내의 온도분포와 Nusselt수의 값은 R 하(a) 수 및 압력구배 변수에 비례하여 증감하였다. 3. Nusselt수는 Corner에서 유속지연에 의한 온도분포의 특성 때문에 그 값이 감소하였으며 최대치는 0.7부근이었다

  • PDF

수평미세관내 NH3 비등열전달 특성 (Boiling Heat Transfer of Ammonia inside Horizontal Smooth Small Tube)

  • 최광일;오종택
    • 설비공학논문집
    • /
    • 제25권2호
    • /
    • pp.101-108
    • /
    • 2013
  • This paper is presented an experimental study of flow boiling heat transfer characteristics of ammonia, and is focused on pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal small tube with inner diameter of 3.0 mm and length of 2000 mm. The direct heating method is applied for supplying heat to the refrigerant, where the test tube is uniformly heated by electric current. The local heat transfer coefficients were obtained over a heat flux range of 20 to $80kW/m^2$, a mass flux range of 50 to $500kg/m^2s$, a saturation temperature range of 0 to $10^{\circ}C$, and quality up to 1.0. The pressure drops increase with increasing mass flux and heat flux, and with decreasing saturation temperature. The heat transfer coefficients increase with increasing mass flux and saturation temperature in middle and high quality region. And the local heat transfer coefficient increase with increasing heat flux in low quality region. The heat transfer coefficient of the experimental result was compared with six existing heat transfer coefficient correlation. A new boiling heat transfer coefficient correlation based on the superposition model for ammonia in small tubes is developed average deviation of -0.17% and mean deviation of 10.85%.

적층형 고온초전도 전류도입선의 열 특성 해석 (Heat Characteristic Analysis of Stacking Type HTS Current Lead)

  • 두호익;임성우;홍세은;윤기웅;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.628-631
    • /
    • 2001
  • Current lead is one of the first proposed devices for the application of High Temperature-Superconductor(HTSC). The current lead provides high current for electrical machine using superconductor from room temperature. Its characteristics that is zero resistance and low heat transfer rate under critical temperature lead to research for the replacement of existing current lead with HTSC. In this paper, we investigated the temperature distributions of stacking type and rod type current lead with each cross-section area and length using Nastran program and compared each temperature distribution. It is obtained from this paper that stacking type current lead has flat temperature gradient and than rod type one and more stable operation as current lead is closely related with its cross-section area and length.

  • PDF

Design Optimization and Fabrication of an Advanced High Gradient Magnetic Separator

  • Park, E.B;Choi, S.D;Yang, C.J
    • Journal of Magnetics
    • /
    • 제5권2호
    • /
    • pp.59-64
    • /
    • 2000
  • A drum type of high gradient magnetic separator was designed and optimized by computer simulations. The magnetic separator consists of high performance rare earth $(Nd_2Fe_14B)$ permanent magnets and magnetic yokes of extremely low carbon steel interconnecting the permanent magnets. Magnetic circuits of the separator were simulated for the aim of the least cost, highest magnetic strength and most efficient function by using specialized S/W (Vector Field Program) employing the Finite Element Method. The magnetic flux density was provided to be strong enough to collect the invisible fine metal particles from the surface of hot rolled steel plate with the efficiency of almost 95%.

  • PDF