• Title/Summary/Keyword: Flux Leakage

Search Result 312, Processing Time 0.032 seconds

Oxidation Models of Rotor Bar and End Ring Segment to Simulate Induction Motor Faults in Progress

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.163-172
    • /
    • 2011
  • Oxidation models of a rotor bar and end ring segment in an induction motor are presented to simulate the behavior of an induction machine working with oxidized rotor parts which are modeled as rotor faults in progress. The leakage inductance and resistance of the rotor parts arc different from normal values because of the oxidation process. The impedance variations modify the current density and magnetic flux which pass through the oxidized parts. Consequently, it causes the rotor asymmetry which induces abnormal harmonics in the stator current spectra of the faulty machine. The leakage inductances of the oxidation models are derived by the Ampere's law. Using the proposed oxidation models, the rotor bar and end ring faults in progress can be modeled and simulated with the motor current signature analysis (MCSA). In addition, the oxidation process of the rotor bar and end ring segment can motivate the rotor asymmetry, which is induced by electromagnetic imbalances, and it is one of the major motor faults. Results of simulations and experiments are compared to each other to verify the accuracy of the proposed models. Experiments are achieved using 3.7 kW, 3-phase, and squirrel cage induction motors with a motor drive inverter.

Interpretation of two SINBAD photon-leakage benchmarks with nuclear library ENDF/B-VIII.0 and Monte Carlo code MCS

  • Lemaire, Matthieu;Lee, Hyunsuk;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1355-1366
    • /
    • 2020
  • A review of the documentation and an interpretation of the NEA-1517/74 and NEA-1517/80 shielding benchmarks (measurements of photon leakage flux from a hollow sphere with a central 14 MeV neutron source) from the SINBAD database with the Monte Carlo code MCS and the most up-to-date ENDF/B-VIII.0 neutron data library are conducted. The two analyzed benchmarks describe satisfactorily the energy resolution of the photon detector and the geometry of the spherical samples with inner beam tube, tritium target and cooling water circuit, but lack information regarding the detector geometry and the distances of shields and collimators relatively to the neutron source and the detector. Calculations are therefore conducted for a sphere model only. A preliminary verification of MCS neutron-photon calculations against MCNP6.2 is first conducted, then the impact of modelling the inner beam tube, tritium target and cooling water circuit is assessed. Finally, a comparison of calculated results with the libraries ENDF/B-VII.1 and ENDF/B-VIII.0 against the measurements is conducted and shows reasonable agreement. The MCS and MCNP inputs used for the interpretation are available as supplementary material of this article.

The basic research of transcutaneous energy transmission system for totally implantable artificial heart (체내 이식형 인공심장의 무선에너지 전송 시스템에 관한 기초적 연구)

  • Kim, J.H.;Kim, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.407-410
    • /
    • 2002
  • As a part of electro-mechanical totally implantable artificial heart, a transcutaneous energy transmission system has been developed. By mutual magnetic induction between the first coil on the skin and the subcutaneously implanted second coil, the system transfers electrical power through the skin. This research aimed a minimizing the size of the implanted part as well as maximizing the transfer efficiency. When an air gap is 1$\sim$2cm, voltage gain and current gain low and it is hard to transfer energy due to large leakage flux. That is, the required input voltage and input current must be large compared with the output voltage and output current, respectively, This paper research the inverter topology and the control method in order to increase the voltage gain and the current gain. For this purpose, this inverter employs double tune to compensate the large leakage inductance of primary and secondary of the transcutaneous transformer. And the output energy of transcutaneous energy transmission system supply for Lithium-ion battery charger.

  • PDF

Boundary Element Analysis of Magnetic Shielding Effects of Shield Cup in Electron Gun (경계요소법을 이용한 전자총 Shield Cup의 자기차폐 특성해석)

  • Go, Chang-Seop;Jeong, Gwan-Sik;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.291-296
    • /
    • 2000
  • Recently large size color TV and computer monitor are very popular and a lot techniques are being developed to get a high quality picture on the screen through reducing the convergence error among the red, green and blue beams and achieving a high focusing. One of the techniques is considering the mutual effects of the components of the Brown tube. The magnetic deflection yoke, especially, stands immediately next to the electron gun and generates the leakage magnetic fields at the electron gun which affects the trajectories of the electron beams inside the gun. Hence a shield cup made of thin conducting plate is located at the end of electron gun in order to shield the leakage flux from the deflection yoke. Since the red, green and blue beams are placed unsymmetrically the shielding effects of the shield cup on the beams are not same and eddy current controller, made of thin conducting plate, is auxiliary placed inside the shield cup. In this paper a transient magnetic field analysis algorithm is developed using boundary element method, and applied to the analysis of the shielding effects of the eddy current controller of shield cup in an electron gun.

  • PDF

Incorporation of anisotropic scattering into the method of characteristics

  • Rahman, Anisur;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3478-3487
    • /
    • 2022
  • In this study, we incorporate an anisotropic scattering scheme involving spherical harmonics into the method of characteristics (MOC). The neutron transport solution in a light water reactor can be significantly improved because of the impact of an anisotropic scattering source with the MOC flat source approximation. Several problems are selected to verify the proposed scheme and investigate its effects and accuracy. The MOC anisotropic scattering source is based on the expansion of spherical harmonics with Legendre polynomial functions. The angular flux, scattering source, and cross section are expanded in terms of the surface spherical harmonics. Later, the polynomial is expanded to achieve the odd and even parity of the source components. Ultimately, the MOC angular and scalar fluxes are calculated from a combination of two sources. This paper presents various numerical examples that represent the hot and cold conditions of a reactor core with boron concentration, burnable absorbers, and control rod materials, with and without a reflector or baffle. Moreover, a small critical core problem is considered which involves significant neutron leakage at room temperature. We demonstrate that an anisotropic scattering source significantly improves solution accuracy for the small core high-leakage problem, as well as for practical large core analyses.

Numerical Modelling of Radionuclide Migration for the Underground Silo at Near-Field

  • Myunggoo Kang;Jaechul Ha
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.465-479
    • /
    • 2023
  • To ensure the safety of disposal facilities for radioactive waste, it is essential to quantitatively evaluate the performance of the waste disposal facilities by using safety assessment models. This paper addresses the development of the safety assessment model for the underground silo of Wolseong Low-and Immediate-Level Waste (LILW) disposal facility in Korea. As the simulated result, the nuclides diffused from the waste were kept inside the silo without the leakage of those while the integrity of the concrete is maintained. After the degradation of concrete, radionuclides migrate in the same direction as the groundwater flow by mainly advection mechanism. The release of radionuclides has a positive linear relationship with a half-life in the range of medium half-life. Additionally, the solidified waste form delays and reduces the migration of radionuclides through the interaction between the nuclides and the solidified medium. Herein, the phenomenon of this delay was implemented with the mass transfer coefficient of the flux node at numerical modeling. The solidification effects, which are delaying and reducing the leakage of nuclides, were maintained the integrity of the nuclides. This effect was decreased by increasing the half-life and the mass transfer coefficient of radionuclides.

Effects of the Remanent Magnetization on Detecting Signals in Magnetic Flux Leakage System (자기누설탐상시스템에서 배관의 잔류자화가 결함신호에 미치는 영향)

  • Seo, Kang;Jeong, Hyun-Won;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.325-331
    • /
    • 2005
  • The magnetic Hut leakage (MFL) type nondestructive testing (NDT) method is widely used to detect corrosion and defects, mechanical deformation of the underground gas pipelines. The object pipeline is magnetically saturated by the magnetic system with permanent magnet and yokes. Because of the strong magnetic field enough to saturate the pipe, there could be distortion of the sensing signals because of the magnetization of the pipeline itself, To detect the defects precisely, the sensing signals are need to be compensated to eliminate the distortions coming from the media hysteresis. In this paper, the magnetizations of the pipeline in MFL type NDT are analyzed by Preisach model and 3D FEM. The distortions of the sensing signals are analyzed.

Study of the Reduction of Torque Ripples for Multi-pole Interior Permanent Magnet Synchronous Motors using Rotor Saliency (회전자 돌극 설계를 이용한 다극 매입형 영구자석 동기전동기의 토크리플 저감 연구)

  • Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.6270-6275
    • /
    • 2014
  • The paper reports an improvement method on torque ripples of multi-pole interior permanent magnet synchronous motor (IPMSM) applied to a traction motor for hybrid electric vehicles. In the case of multi-pole IPMSM, the magnetic flux generated by a permanent magnet tends to leak through the bridge of the rotor without a link with stator windings. The slit design on the rotor surface was proposed to reduce torque rippling and increase the output power by reducing the leakage flux. Two design parameters for the slit are suggested for optimal design using the response surface method. As an analysis method, the 2D finite element method (FEM) was applied to consider magnetic saturation effect.

One-step Monte Carlo global homogenization based on RMC code

  • Pan, Qingquan;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1209-1217
    • /
    • 2019
  • Due to the limitation of the computers, the conventional homogenization method is based on many assumptions and approximations, and some tough problems such as energy spectrum and boundary condition are faced. To deal with those problems, the Monte Carlo global homogenization is adopted. The Reactor Monte Carlo code RMC is used to study the global homogenization method, and the one-step global homogenization method is proposed. The superimposed mesh geometry is also used to divide the physical models, leading to better geometric flexibility. A set of multigroup homogenization cross sections is online generated for each mesh under the real neutron energy spectrum and boundary condition, the cross sections are adjusted by the superhomogenization method, and no leakage correction is required. During the process of superhomogenization, the author-developed reactor core program NLSP3 is used for global calculation, so the global flux distribution and equivalent homogenization cross sections could be solved simultaneously. Meanwhile, the calculated homogenization cross section could accurately reconstruct the non-homogenization flux distribution and could also be used for fine calculation. This one-step global homogenization method was tested by a PWR assembly and a small reactor model, and the results show the validity.

Development of Inter-Turn Short Circuits Sensor for Field Winding of Synchronous Generator

  • Nam J-H;Jeon Y-S;Choe G-H;Lee S-H;Jeong S-Y;Yoo B-Y;Ju Y-H;Lee Y-J;Shin W-S
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.56-59
    • /
    • 2001
  • An effective method of detecting inter-turn short circuits on round rotor windings is described. Shorted-turns can have significant effects on a generator and its performance. A method of detecting inter-turn short circuits on rotor windings is described. The approach used is to measure the rate of change of the air-gap flux density wave when the rotor is at operating speed and excitation is applied to the field winding. The inter-turn short circuits sensor for synchronous generator's field winding has been developed. The sensor, installed in the generator air-gap, senses the slot leakage flux of field winding and produces a voltage waveform proportional to the rate of change of the flux. For identification of reliability for sensor, a inter-turn short circuits test was performed at the West-Inchon combined cycle power plant on gas turbine generator and steam turbine generator. This sensor will be used as a detecting of shorted-turn for field winding of synchronous generator. The purpose of this paper is to describe the design and operation of a sensitive inter-turn short circuits detector. In this paper, development of inter-turn short circuits sensor for field winding of synchronous generator and application in a field.

  • PDF