• Title/Summary/Keyword: Flux Chamber

Search Result 257, Processing Time 0.029 seconds

Sensitivity Study of the Flow-through Dynamic Flux Chamber Technique for the Soil NO Emissions

  • Kim Deug-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E3
    • /
    • pp.75-85
    • /
    • 2005
  • A mathematical sensitivity analysis of the flow-through dynamic flux chamber technique, which has been utilized usually for various trace gas flux measurement from soil and water surface, was performed in an effort to provide physical and mathematical understandings of parameters essential for the NO flux calculation. The mass balance equation including chemical reactions was analytically solved for the soil NO flux under the steady state condition. The equilibrium concentration inside the chamber, $C_{eq}$, was found to be determined mainly by the balance between the soil flux and dilution of the gas concentration inside the chamber by introducing the ambient air. Surface deposition NO occurs inside the chamber when the $C_{eq}$ is greater than the ambient NO concentration ($C_{0}$) introducing to the chamber; NO emission from the soil occurs when the $C_{eq}$ is less than the ambient NO concentration. A sensitivity analysis of the significance of the chemical reactions of NO with the reactive species (i.e. $HO_{2},/CH_{3}O_{2},/O_{3}$) on the NO flux from soils was performed. The result of the analysis suggests that the NO flux calculated in the absence of chemical reactions and wall loss could be in error ranges from 40 to $85\%$ to the total flux.

Study on Calorimeteric Chamber for Heat Flux Measurement in Liquid Rocket Engine (액체로켓 추력실에서 heat flux측정을 위한 calorimeteric chamber의 연구)

  • Kim, Byeong Hun;Park, Hui Ho;Hwang, Su Gwon;Kim, Yu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.76-81
    • /
    • 2003
  • To investigate the convective heat transfer phenomena inside the Lox/Kerosene liquid rocket combustion chamber, hot fire tests were performed by using a water-cooled calorimetric chamber. The calorimetric chamber consists of one cylindrical section and nozzle section with independent cooling passage. To measure the heat flux, thermocouples were installed inlet and outlet of cooling passage of each section. The investigated range of combustion chamber pressure is from 100 psi to 300psi at fixed O/F ratio of 2.0 and radiation heat transfer from the hot gas to the surface is not considered. The measured heat flux was almost linearly depended on the chamber pressure.

Study on the Heat Flux Using Instantaneous Temperature as Height of Probe in the Combustion Chamber (연손실 순간온도 측저에 있어서 돌출높이에 따른 실험적 연구)

  • 이치우;김지훈;김시범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.395-402
    • /
    • 2001
  • The gasoline engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc, in the engine, Thine film instantaneous temperature measurement probe was made. And the manufactural method of probe was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured by this probe and the heat flux was obtained by Fourier analysis. The authors measured the wall temperature of combustion chamber and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on height of probe. For achieving this goal, the thin film instantaneous temperature probe was developed for analyzing the instantaneous surface wall temperature and unsteady heat flux on the constant volume combustion chamber.

  • PDF

A Study of Hear Flux and Instantaneous Temperature According to the Initial Tamperature of Combustion Chamber in a Constant Volume Combustion Chamber (연소실 초기온도 변화에 따른 순간열유속에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.193-200
    • /
    • 2003
  • In the production of internal combustion engines, there has been a move towards the development of high performance engines with improved fuel efficiency, lighter weight and smaller sizes. These trends help to answer problems in engines related to thermal load and abnormal combustion. In order to investigate these problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe. For achieving the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

  • PDF

An Experimental study for the heat flux in liquid rocket thrust chamber (액체로켓 추력실에서 발생하는 Heat Flux에 관한 실험적 연구)

  • An, Won Geun;Park, Hui Ho;Hwang, Su Gwon;Kim, Yu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.65-71
    • /
    • 2003
  • In this research, we make the thin wall chamber to the measurement of heat flux of using a Kerosene/LOx liquid rocket engine's thrust chamber. The wall thickness is one millimeter. We measured outside wall temperature of thrust chamber by nine thermocouple. We suppose the system to the one-dimension unsteady state, and so the heat flux and heat transfer coefficient of thurst chamber are calculated using one-dimensional the transient energy equation by outside wall temperature. In this case, O/F ratio is 2.0, experimental variation is chamber pressure and we got the heat transfer coefficient of the proportion relation of 0.88 times for the chamber pressure.

A Study of Heat Flux According to the Initial Temperature of Combustion Chamber and Blight of Probe in a Constant Volume Combustion Chamber (돌출높이와 초기온도 변화에 따른 연소실 벽면에서의 열유속에 관한 연구)

  • Lee Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1055-1062
    • /
    • 2004
  • As for the Production of internal combustion engines there has been further movement toward development of high Performance engines with improved fuel efficiency as well as a lightweight and a small size. These tendencies help to solve the problems in engines for example, such as thermal load. abnormal combustion and so on. In order to investigate these Problems, a thin film-type probe for measuring instantaneous temperature has been suggested. A method for manufacturing such a probe was established in this study The instantaneous surface temperature of a constant volume combustion chamber was measured by using this probe and the heat flux was obtained through Fourier analysis In order to thoroughly understand the characteristics of combustion. authors measured wall temperature of combustion chamber and calculated heat flux through a cylinder wall while varying the protrusion height of probe. For these Purposes, the instantaneous surface temperature probe was developed. thereby making possible the analysis of instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

Estimation of Ammonia Flux and Emission Factor from Cattle Housing Using Dynamic Flux Chamber (Dynamic Flux Chamber를 이용한 소사육시설의 암모니아 플럭스 및 배출계수 평가)

  • Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.33-43
    • /
    • 2010
  • Atmospheric ammonia is a very important constituent of the environment because it is the dominant alkaline gaseous species present in the atmosphere. Ammonia is known to affect ecosystems at relatively low concentration. In this study flux profiles of ammonia emitted from the cattle housing were evaluated using a dynamic flux chamber (DFC). We have developed the emission factor of $NH_3$ from the cattle housing. Analysis of ammonia flux variation was made with respect to such variables as manure surface temperature, pH, and ammonium concentration. Ammonia flux has been measured up to summer in 2007 at calf and cattle housing. In the fall, average ammonia flux from calf and cattle housing was estimated as 1.406 (${\pm}0.947$) and 1.534 ((${\pm}0.956$) $mg\;m^2\;min^1$, respectively. In the winter, average ammonia flux was estimated 1.060 ((${\pm}0.569$) from the calf housing and 1.216 ((${\pm}0.655$) $mg\;m^2\;min^1$ from the cattle housing. The correlation coefficient (R=0.732) between ammonia flux and manure surface ammonium concentration exhibited stronger relationship than manure surface pH and temperature. In the fall, ammonia emission factor from calf and cattle housing was estimated as 3.94 ((${\pm}2.66$) and 11.41 ((${\pm}5.86$) kg-$NH_3$ animal$^1\;yr^1$, respectively. In the winter, ammonia average flux was estimated as 2.89 ((${\pm}1.59$) from the calf housing and 6.51 ((${\pm}3.67$) kg-$NH_3$ animal$^1\;yr^1$ from the cattle housing.

A Study on the Ignition Characteristics at Constant Volume Combustion Chamber of LPG (LPG 정적연소실내 점화특성에 관한 연구)

  • 박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-82
    • /
    • 2004
  • The allowable exhaust standard has been intensified as a part of the countermeasure to decrease air pollution in the world. As the cars with an alternative fuel starts to get into the spotlight, the cars with low emission has been introduced and exhaust gas regulation forced in this country. These days, LPG vehicles, which infrastructure of fuel was already built up, and CNG vehicles are recognized for alternative fuel cars in this country. In this study, the constant volume combustion chamber was manufactured and used for experiments to obtain the ignition characteristics of LPG fuel and the optimal ignition energy. The experiment measured the combustion characteristics, in regard to the change of combustion variable, and the change of ignition energy. During the combustion of fuel, the maximum temperature inside the combustion chamber is higher when the initial pressure is higher. The burning velocity also seems to have the same characteristic as the temperature. However, the heat flux did not change much with the theoretical correct mixture but the various initial temperature of the combustion chamber. The heat flux got faster and ignition energy bigger as the dwell time of the ignition system expanded. When the dwell time get longer, the ignition energy also increased then fixed. The ignition energy increased as the initial pressure inside the combustion chamber higher. The heat flux got faster as the dwell time expanded.

Development of NH3 Emission Factors using a Dynamic Flux Chamber in a Sewage Treatment Plant (부유형 챔버를 이용한 하수처리장에서의 암모니아 배출 특성 연구)

  • Jeon, Eui-Chan;Sa, Jae-Hwan;Park, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.263-273
    • /
    • 2005
  • In this study, the major emission procedures and emission characteristics were identified at the site of sewage treatment plant which is one of the major sources of ammonia. At the same time the emission factors and emission rates were estimated. In order to calculate the emission flux, we used a Dynamic Flux Chamber(DFC), which is found to be a proper sampling devise for area sources such as sewage treatment plant. It was found that the most stable sampling condition was when the stirrer's speed of DFC was 120RPM, and it would be the best time to take a sample 60 minutes later after setting the chamber. The relatively higher flux was shown in Autumn compared to summer and winter. Annual ammonia emission rates procedures were calculated as $906.32{\mu}g/activity-ton$, $1,114.72{\mu}g/activity-ton$ and $437.53{\mu}g/activity-ton$ each at the primary settling basin, aeration basin and the final settling basin, respectively. The ammonia emission rate the highest at in the aeration basin according to this test. This results was due to that the surface of aeration basin or the final settling basin is relatively wider than the primary settling basin.

Heat Flux Evaluation of KSR-III Sub-scale Chamber (KSR-III 축소형 연소기의 열유속 평가)

  • 조원국;문일윤;김종규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.81-84
    • /
    • 2004
  • A water-cooled calorimeter chamber with 8 cooling channels based on KSR-III sub-scale chamber has been designed and manufactured. One dimensional empirical correlation has been used at the design stage and full three-dimensional CFD analysis has been conducted to confirm the cooling condition for hot fire test is safe. Predicted heat flux is accurate around the nozzle throat when the thermal resistance of carbon deposit is considered. However relatively large difference is observed in chamber part.