• Title/Summary/Keyword: Flutter suppress

Search Result 16, Processing Time 0.024 seconds

Flutter Suppression of Cantilevered Plate Wing using Piezoelectric Materials

  • Makihara, Kanjuro;Onoda, Junjiro;Minesugi, Kenji
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.70-85
    • /
    • 2006
  • The supersonic flutter suppression of a cantilevered plate wing is studied with the finite element method and the quasi-steady aerodynamic theory. We suppress wing flutter by using piezoelectric materials and electric devices. Two approaches to flutter suppression using piezoelectric materials are presented; an energy-recycling semi-active approach and a negative capacitance approach. To assess their flutter suppression performances, we simulate flutter dynamics of the plate wing to which piezoelectric patches are attached. The critical dynamic pressure drastically increases with our flutter control using a negative capacitor.

Transonic Flutter Suppression of the 2-D Flap Wing with External Store using CFD-based Aeroservoelasticity

  • Lee, Seung-Jun;Lee, In;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.121-127
    • /
    • 2006
  • An analysis procedure for the combined problem of control algorithm and aeroelastic system which is based on the computational fluid dynamics(CFD) technique has been developed. The aerodynamic forces in the transonic region are calculated from the transonic small disturbance(TSD) theory. An linear quadratic regulator(LQR) controller is designed to suppress the transonic flutter. The optimal control gain is estimated by solving the discrete-time Riccati equation. The system identification technique rebuilds the CFD-based aeroelstic system in order to form an adequate system matrix which involved in the discrete-time Riccati equation. Finally the controller, that is constructed on the basis of system identification technique, is used to suppress the flutter phenomenon of the airfoil with attached store. This approach, that is, the CFD-based aeroservoelasticity design, can be utilized for the development of effective flutter controller design in the transonic region.

Multiple tuned mass dampers for controlling coupled buffeting and flutter of long-span bridges

  • Lin, Yuh-Yi;Cheng, Chii-Ming;Lee, Chung-Hau
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.267-284
    • /
    • 1999
  • Multiple tuned mass dampers are proposed to suppress the vertical and torsional buffeting and to increase the aerodynamic stability of long-span bridges. Each damper has vertical and torsional frequencies, which are tuned to the corresponding frequencies of the structural modes to suppress the resonant effects. These proposed dampers maintain the advantage of traditional multiple mass dampers, but have the added capability of simultaneously controlling vertical and torsional buffeting responses. The aerodynamic coupling is incorporated into the formulations, allowing this model to effectively increase the critical speed of a bridge for either single-degree-of-freedom flutter or coupled flutter. The reduction of dynamic response and the increase of the critical speed through the attachment of the proposed dampers to the bridge are also discussed. Through a parametric analysis, the characteristics of the multiple tuned mass dampers are studied and the design parameters - including mass, damping, frequency bandwidth, and total number of dampers - are proposed. The results indicate that the proposed dampers effectively suppress the vertical and the torsional buffeting and increase the structural stability. Moreover, these tuned mass dampers, designed within the recommended parameters, are not only more effective but also more robust than a single TMD against wind-induced vibration.

Gust Response and Active Suppress based on Reduced Order Models

  • Yang, Guowei;Nie, Xueyuan;Zheng, Guannan
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.44-49
    • /
    • 2015
  • A gust response analyses method based on Reduced Order Models (ROMs) was developed in the paper. Firstly, taken random signal as the input signal and adopt Single Input-Multi-Output (SIMO) training fashion, a ROM based on Auto-Regressive and Moving Average model (ARMA) was established and validated with the comparison of CFD/CSD and experiment. Then, by introducing control surface deflection and control laws, flutter active suppress was studied. Lastly, through filtering and transferring function, the gust temporal signal is obtained based on Dryden gust model, and gust response and suppress were simulated.

Flutter Suppression of 2-D Wing/Store Model (2차원 날개/스토어 모델의 플러터 억제)

  • Bae, Jae-Sung;Kim, Do-Hyung;Yang, Seung-Man;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1197-1201
    • /
    • 2001
  • Flutter suppression of a wing/store model is investigated. An aircraft wing with a store is modeled as a 2-D typical section. Unsteady aerodynamics of the wing/store model are computed by using Doublet Hybrid Method(DHM) in the frequency-domain, and are approximated by Minimum-state(MS) approximation. LQG controller is used to suppress the flutter of the wing/store model and the aeroelastic characteristics of the closed-loop system are investigated. The flutter characteristics of the wing/store model are improved and the flutter speed is increased up to about 16 %.

  • PDF

Flutter Suppression of Wing/store Model (날개/스토어 모델의 플러터 억제)

  • Bae, Jae-Sung;Kim, Do-Hyung;Yang, Seung-Man;Lee, In
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.493-501
    • /
    • 2002
  • Flutter suppression of a wing/store model is investigated. An aircraft wing with a store is modeled as a 2-D typical section. Unsteady aerodynamics of the wing/store model are computed by using doublet hybrid method(DHM) in the freauency-domain, and are approximated by minimumstate(MS) approximation. LQG controller is used to suppress the flutter of the wing/store model and the aeroelastic characteristics of the closed-loop system are investigated. The flutter characteristics of the wing/store model are improved and the flutter speed is increased up to about 24 %.

Flutter Characteristics and Active Vibration Control of Aircraft Wing with External Store (외부장착물이 있는 항공기 날개의 플러터 특성 및 능동 진동 제어)

  • Kang, Lae-Hyong;Lee, Seung-Jun;Lee, In;Han, Jae-Hung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.73-80
    • /
    • 2007
  • Modern aircraft are required to carry various external stores mounted at different locations on the wing. Sometimes the attachment of stores to an aircraft wing leads to flutter speed reduction, which is a very severe aeroelastic problem. In order to suppress structural vibration and expand the flutter boundary of the aircraft with stores, it is necessary to investigate the main problems and characteristics of them. In addition, active vibration control may be required because passive vibration isolators show limited capabilities for the various wing/store configuration. In this paper, therefore, the flutter stability to the various wing/store configurations was investigated and active vibration control of wing/store model was performed using a piezoelectric actuator.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF

Improvement of dynamic responses of a pedestrian bridge by utilizing decorative wind chimes

  • Liu, Wei-ya;Tang, Hai-jun;Yang, Xiaoyue;Xie, Jiming
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.317-323
    • /
    • 2020
  • A novel approach is presented to improve dynamic responses of a pedestrian bridge by utilizing decorative wind chimes. Through wind tunnel tests, it was verified that wind chimes can provide stabilization effects against flutter instability, especially at positive or negative wind angles of attack. At zero degrees of angle of attack, the wind chimes can change the flutter pattern from rapid divergence to gradual divergence. The decorative wind chimes can also provide damping effects to suppress the lateral sway motion of the bridge caused by pedestrian footfalls and wind forces. For this purpose, the swing frequency of the wind chimes should be about the same as the structural frequency, which can be achieved by adjusting the swing length of the wind chimes. The mass and the swing damping level are other two important and mutually interactive parameters in addition to the swing length. In general, 3% to 5% swing damping is necessary to achieve favorite results. In the study case, the equivalent damping level of the entire system can be increased from originally assumed 1% up to 5% by using optimized wind chimes.

A Study on the Response Characteristics of Aeroelastic Systems Applying Robust Observer and Controller (강인한 관측기와 제어기를 적용한 공탄성 시스템의 응답특성 연구)

  • Jeong, In-Joo;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.115-120
    • /
    • 2004
  • This paper concerns the active aeroelastic control of flapped wing systems exposed to blast and/or the sonic boom in an incompressible flow field. This is achieved via implementation of a robust estimation capability (sliding mode observer: SMO), and of the use of the deflected flap as to suppress the flutter instability or enhance the subcritical aeroelastic response to blast loads. To this end, a control methodology using LQG(Linear Quadratic Gaussian) in conjunction with SMO is implemented, and its performance toward suppressing flutter and reducing the vibrational level in the subcritical flight speed range is demonstrated. Moreover, its performances are compared to the ones provided via implementation of conventional LQG with Kalman filter.

  • PDF