• Title/Summary/Keyword: Flutter modes

Search Result 37, Processing Time 0.023 seconds

Aerothermoelastic Analysis of Cylindrical Piezolaminated Shells Based on Multi-field Layerwise Theory (다분야 층별 이론에 기초한 원통형 압전적층 쉘의 공력열탄성학적 해석)

  • Oh, Il-Kwon;Shin, Won-Ho;Lee, In
    • Composites Research
    • /
    • v.15 no.3
    • /
    • pp.52-61
    • /
    • 2002
  • For the aerothermoelastic analysis of cylindrical piezolaminated shells, geometrically nonlinear finite elements based on the multi-field layerwise theory hale been developed. Applying a Han Krumhaar's supersonic piston theory, supersonic flutter analyses are performed for the cylindrical piezolaminted shells subject to thermal stresses and deformations. The possibility to increase flutter boundary and reduce thermoelastic deformations of piezolaminated panels is examined using piezoelectric actuations. Results show that active piezoelectric actuations can effectively increase the critical aerodynamic pressure by retarding the coalescence of flutter modes and compensating thermal stresses.

Multiple tuned mass dampers for controlling coupled buffeting and flutter of long-span bridges

  • Lin, Yuh-Yi;Cheng, Chii-Ming;Lee, Chung-Hau
    • Wind and Structures
    • /
    • v.2 no.4
    • /
    • pp.267-284
    • /
    • 1999
  • Multiple tuned mass dampers are proposed to suppress the vertical and torsional buffeting and to increase the aerodynamic stability of long-span bridges. Each damper has vertical and torsional frequencies, which are tuned to the corresponding frequencies of the structural modes to suppress the resonant effects. These proposed dampers maintain the advantage of traditional multiple mass dampers, but have the added capability of simultaneously controlling vertical and torsional buffeting responses. The aerodynamic coupling is incorporated into the formulations, allowing this model to effectively increase the critical speed of a bridge for either single-degree-of-freedom flutter or coupled flutter. The reduction of dynamic response and the increase of the critical speed through the attachment of the proposed dampers to the bridge are also discussed. Through a parametric analysis, the characteristics of the multiple tuned mass dampers are studied and the design parameters - including mass, damping, frequency bandwidth, and total number of dampers - are proposed. The results indicate that the proposed dampers effectively suppress the vertical and the torsional buffeting and increase the structural stability. Moreover, these tuned mass dampers, designed within the recommended parameters, are not only more effective but also more robust than a single TMD against wind-induced vibration.

On the Improved Method for the Mode Shapes of a Curved Beam in a Drum Brake

  • Lim, Byoung-Duk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.63-75
    • /
    • 1996
  • The squeal vibration of a drum is the major source of brake noise. In this system the binary flutter model of squeal vibration was employed for the drum brake of a passenger car. The vibration analysis of a drum brake was performed by using normal modes, which are obtained by variational method. An improved method for the estimation of shoe modes is proposed and the results are compared with the exact solutions. Numerical results for the coupled system of drum and shoes good agreement with the results of experimental model analysis and those obtained by FE analysis.

  • PDF

Ant colony optimization for dynamic stability of laminated composite plates

  • Shafei, Erfan;Shirzad, Akbar
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.105-116
    • /
    • 2017
  • This paper presents the dynamic stability study of laminated composite plates with different force combinations and aspect ratios. Optimum non-diverging stacking is obtained for certain loading combination and aspect ratio. In addition, the stability force is maximized for a definite operating frequency. A dynamic version of the principle of virtual work for laminated composites is used to obtain force-frequency relation. Since dynamic stiffness governs the divergence or flutter, an efficient optimization method is necessary for the response functional and the relevant constraints. In this way, a model based on the ant colony optimization (ACO) algorithm is proposed to search for the proper stacking. The ACO algorithm is used since it treats with large number of dynamic stability parameters. Governing equations are formulated using classic laminate theory (CLT) and von-Karman plate technique. Load-frequency relations are explicitly obtained for fundamental and secondary flutter modes of simply supported composite plate with arbitrary aspect ratio, stacking and boundary load, which are used in optimization process. Obtained results are compared with the finite element method results for validity and accuracy convince. Results revealed that the optimum stacking with stable dynamic response and maximum critical load is in angle-ply mode with almost near-unidirectional fiber orientations for fundamental flutter mode. In addition, short plates behave better than long plates in combined axial-shear load case regarding stable oscillation. The interaction of uniaxial and shear forces intensifies the instability in long plates than short ones which needs low-angle layup orientations to provide required dynamic stiffness. However, a combination of angle-ply and cross-ply stacking with a near-square aspect ratio is appropriate for the composite plate regarding secondary flutter mode.

Efficient Aerodynamic Computation of a Wing Model Considering Body Effect for the Aeroelastic Application

  • Lee, Seung-Jun;Im, Dong-Kyun;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.14-19
    • /
    • 2009
  • The typical aeroelastic analysis for a complex configuration such as a complete aircraft was done using the aerodynamic results of the wing and the structural modes of a complete aircraft; that is, the aerodynamics of a wing of a complete aircraft is assumed to be not much influenced by the body shape. Nevertheless, the body shape can cause a distortion of aerodynamic pressure on the wing surface and it is necessary to investigate the body effect in flutter analysis. In this reseasrch, MGM inverse design method is applied to include the body effect of a wing-body model which disturbs the pressure distribution on the wing surface.

Stability Analysis of Pipe Conveying Fluid with Crack (크랙을 가진 유체유동 파이프의 안정성 해석)

  • Ahn, Tae-Su;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.865-868
    • /
    • 2006
  • In this paper, a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the flutter and buckling instability of a cracked pipe conveying fluid due to the coupled mode (modes combined) is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The stiffness of the spring depends on the crack severity and the geometry of the cracked section. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. This study will contribute to the safety test and stability estimation of structures of a cracked pipe conveying fluid.

  • PDF

Vibration Characteristics of Rotating Disks with Aerodynamic Effect (II) - Experimental Verifications - (공기 유동 효과를 고려한 회전 디스크의 진동 특성 (II) - 실험적 검증 -)

  • Lim, Hyo-Suk;Yim, Vit;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.135-142
    • /
    • 2008
  • Experimental studies on the aerodynamic coupling effect on natural frequencies, critical speed and flutter instability of rotating disks are investigated in this paper. The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and damping and stiffness components. The experiments performed using a vacuum chamber and ASMO/DVD disks rotating in vacuum, open and enclosure in several gaps with stationary wall give three main results. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency of disks rotating in open air is larger than that in enclosure. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

The Effect of a Tip Mass on Dynamic Stability of Pipes on Elastic Foundations (탄성기초 위에 놓인 파이프의 동적 안정성에 미치는 말단 질량의 영향)

  • 류봉조;김건희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1115-1122
    • /
    • 2004
  • The paper discussed the effect of a tip mass on the stability of pipes on elastic foundations. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. With or without internal damping, the critical flow velocities of the pipes are investigated according to the variation of elastic foundation parameters and tip mass ratios. Also. the relationship between the eigenvalue branches and the corresponding flutter modes of the cantilevered pipes with a tip mass on the elastic foundations is fully investigated.

NONLINEAR FLUTTER ANALYSIS USING INVISCID REDUCED ORDER MODELING TECHNIQUE (비점성 저차모델링 기법을 활용한 비선형 플러터 해석)

  • Kim, Y.H.;Kim, D.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.458-464
    • /
    • 2011
  • A new method identifies coupled fluid-structure system with a reduced set of state variables is presented. Assuming that the structural model is known a priori either from an analysis or a test and using linear transformations between structural and aeroelastic states, it is possible to deduce aerodynamic information from sampled time histories of the aeroelastic system. More specifically given a finite set of structural modes the method extracts generalized aerodynamic force matrix corresponding to these mode shapes. Once the aerodynamic forces are known, an aeroelastic reduced-order model can be constructed in discrete-time, state-space format by coupling the structural model and the aerodynamic system. The resulting reduced-order model is suitable for constant Mach, varying density analysis.

  • PDF

Dynamic Characteristics Research of DVD Disk due to Disk-Wall Gap (간격 변화에 따른 DVD 디스크의 동특성 연구)

  • 임효석;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1095-1100
    • /
    • 2003
  • Experimental studies on the aerodynamic coupling effect on natural frequencies, critical speed and flutter instability of DVD disks are investigated in this paper. The experimental results are compared with the theoretical analyses where the aerodynamic effects are represented in terms of elastic, lift and damping and stiffness components. The experiments are performed using a vacuum chamber and DVD disks rotating in vacuum, open and enclosure with several different gaps between disk and wall. The following three results are given. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency decreases as the disk-wall gap is decreased. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

  • PDF