• Title/Summary/Keyword: Fluorosilicone

Search Result 7, Processing Time 0.018 seconds

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.

The Effect of Fumed Silica Loading on the Thermal Stability of Fluorosilicone Composites

  • Muhammet Iz;Jinhyok Lee;Myungchan Choi;Yumi Yun;Hyunmin Kang;Jungwan Kim;Jongwoo Bae
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.165-174
    • /
    • 2022
  • The effect of fumed silica loading on the thermal stability and mechanical properties of fluorosilicone (FVMQ) rubber was investigated. The distribution of fumed silica inside FVMQ was characterized using scanning electron microscopy, and the thermal stability of composites was evaluated using thermogravimetric analysis and by the changes in mechanical performance during thermo-oxidative aging. The function mechanism of fumed silica was studied by Fourier transform infrared spectroscopy. The results show that with increasing silica content, the crosslink density of composites, the modulus at 100%, and tensile strength also increased, whereas the elongation at break decreased. Furthermore, increasing the silica content of composites increased the initial decomposition temperature (Td) and residual weight of the composite after exposure to nitrogen. In addition, the thermal oxidative aging experiment demonstrated improved aging resistance of the FVMQ composites, including lower change in tensile strength, elongation at break, and modulus at 100%.

Adsorption Property of Silicone Rubber Sticking Chuck for OLED Glass Substrate

  • Kim, Jin-Hee;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.55-61
    • /
    • 2015
  • Manufacturing process of OLED contains adsorption-desorption process of glass substrate. There are several adsorption methods of glass substrate such as atmospheric pressure, vacuum and electrostatic adsorption. However, these methods are very complex to connect system. Therefore, the adsorption method using silicone rubber based sticking chuck was proposed in this study. Three types of silicone rubbers having 0, 19.3 and 32.2 wt% of fluorine were used and their mechanical properties, surface energies and adsorption properties were examined. According to the results ${\sigma}_{300}$ and hardness increased with increasing fluorine contents, but elongation was decreased. Also, fluorosilicone rubber containing 32.2 wt% of fluorine showed the lowest surface tension, among three types of rubber and resulted in the highest initial tack with glass substrate. After the adsorption-desorption test of 300,000 cycles was performed, the adsorption force of S-1 (silicone rubber) decreased largely from 2.34 to 0.73 MPa. However, the S-3 (fluorosilicone rubber having 32.2 wt%. of fluorine) decreased only from 3.15 to 2.24 MPa. From this study, we obtained the valuable equations related to long term durability of silicone based sticking chuck. Finally the transfer of silicone rubber to glass substrate with the adsorption-desorption process was not occurred and this phenomenon was examined by UV-Visible spectroscopy.

Effect of Sealing Treatment on Solid Particle Impingement Erosion of Al-Zn-Zr Thermal Spray Coating Layer (Al-Zn-Zr 용사코팅층의 고체입자 충돌 침식특성에 미치는 봉공처리의 영향)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.68-76
    • /
    • 2022
  • Several technologies are employed to protect substrates from corrosion and erosion damage. In particular, arc thermal spray coating technology is widely used as anti-corrosive technology for steel and concrete structures and is applied to offshore plants and petrochemical and drilling facilities. In this investigation, solid particle impingement erosion experiments were performed on an arc thermal spraying-coated specimen using 85% Al-14% Zn-1% Zr wire rod in KR-RA steel. This study investigated the effect of fluorosilicone sealing on the erosion resistance characteristics of the thermal spray coating layer. The erosion rates of the thermal spray-coated and sealed specimens were 4.1×10-4 and 8.5×10-4, respectively. At the beginning of the experiment, the fluorosilicone sealant was almost destroyed by the impact of the solid particles. The destruction time for the coating layer was 10 minutes for the thermal spray-coated specimen and 13 minutes for the sealed specimens, indicating that the sealed specimens had better erosion resistance characteristics to solid particle impingement.

The Effects of Plasma Surface Treatment on Fluorosilicone Acrylate RGP Contact Lenses (불화규소 아크릴레이트 RGP 콘택트렌즈의 플라즈마 표면처리 효과)

  • Jang, Jun-Kyu;Shin, Hyung-Sup
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.207-212
    • /
    • 2010
  • Purpose: Rigid gas permeable (RGP) contact lenses, based on fluorosilicone acrylate, were treated with plasma in air. Methods: The chemical compositions were analyzed by using X-ray photoelectron spectroscopy (XPS), the surface morphology and roughness of RGP contact lenses were observed by using atomic force microscopy (AFM), and the wettability changes were estimated by wetting angle measurement. Results: As the contact lenses were treated by the plasma, the F contents decreased significantly, and the O and Si contents increased on the surface. The number of oxygen-containing hydrophilic radicals (C-O and Si-O) increased greatly, the hydrophobic surface decreased, and the wetting angle increased. But the C-O bonds created with exchange of the fluorine did not increase a wettability. The surface compositions were not remarkably changed for the 6 months after plasma treatment, but the wetting angle increased again. Conclusions: It was considered that the improved wettability of the RGP contact lenses of high fluorine content after plasma treatment was affected by the activation of surface, the increase of Si-O, and the decrease of hydrophobic surface.

The Study of Characteristics on EPDM, NBR, FKM, VMQ and FVMQ for Sealing Applications to Lithium Ion Battery (리튬 이온 전지 씰링에의 응용을 위한 EPDM, NBR, FKM, VMQ 및 FVMQ 특성연구)

  • Seo, Kwan-Ho;Cho, Kwang-Soo;Yun, In-Sub;Choi, Woo-Hyuk;Hur, Byung-Ki;Kang, Dong-Gug
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.212-216
    • /
    • 2010
  • The materials of the lithium ion battery gasket require chemical resistance to the electrolyte, electrical insulating, compression set, anti-contamination and heat resistance. To estimate suitability for rubber which has better performance to compression set than PFA, each compound were made with various rubbers, such as EPDM, NBR, FKM, FVMQ, VMQ and we checked the characteristics of each compound. Samples from each compound was deposited in Propylene Carbonate and tested for changing of Hardness and Volume during 1,000 hr with $80^{\circ}C$. EPDM and VMQ showed good performance to chemical resistance to the electrolyte, and also we could get the values over $10^{10}{\Omega}cm$ on volume resistance basis in electrical insulating. EPDM and VMQ were judged as the most suitable material.

The Relationship between Lens Properties and the Lens Wearer's Factors in RGP Lens Manufacturing (RGP렌즈 제조 시 렌즈 물성과 렌즈 착용자 요인과의 관계)

  • Park, Mijung;Park, Ha Young;Park, Jung Ju;Kong, Heejung;Cha, Young Hwa;Kim, So Ra
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • Purpose: The present study was conducted to investigate the changes in the physical properties of RGP lenses induced by the polishing during the process of RGP lens manufacturing, and further evaluate the differences in the actual wearer's comfort and the tear film break-up time caused by these changes. Methods: RGP lenses (fluorosilicone acrylate material) were divided into 4 groups by the different lens-polishing time like 0, 25, 50 and 100 seconds and the thickness, the surface roughness and the wetting angle of those lenses were compared. Furthermore, the comfortability of the lens wear was surveyed after applying these lenses on the subject's eyes with normal tear volume and the non-invasive tear break-up time of the wearers was measured. Results: The central thickness of 4 RGP lenses made of different lens-polishing time was not significantly different however, the lens surface was changed smoother after polishing to be confirmed by scanning electron microscopy. The wetting angle of the RGP lens significantly decreased in accordance with the increase of polishing time. Thus, the difference of approximately $16^{\circ}$ between 0 second and 100 seconds-polishing was statistically significant. The actual wearing feeling of RGP lens was tended to improve in accordance with the increase of the lens wettability however, it was not proportional improvement. The non-invasive tear break-up time of the lens wearers showed different aspect compared with the changes in lens wettability and the actual feeling of RGP lens wear. Conclusions: In this study, better lens wettability, thinner lens thickness, and/or improved lens surface induced by physical stimuli in the process of RGP lens manufacturing was not well-correlated with the increase of actual subjective/objective satisfaction in RGP lens wear. Thus, the consideration of physical properties of the lens as well as the lens wearers' physiological factors in the process of RGP lens manufacturing may be suggested.