• 제목/요약/키워드: Fluorocarbon

검색결과 103건 처리시간 0.024초

태양전지 2 단계 전극형성 공정을 위한 마스크 패턴공정 및 효율에 대한 영향성 연구 (Mask Patterning for Two-Step Metallization Processes of a Solar Cell and Its Impact on Solar Cell Efficiency)

  • 이창준;신동윤
    • 대한기계학회논문집B
    • /
    • 제36권11호
    • /
    • pp.1135-1140
    • /
    • 2012
  • 마스크를 이용하여 니켈 시드층의 형성 후 실버 도금을 통해 태양전지 상부전극을 형성하는 2 단계 전극형성 공정이 태양전지의 고효율화 방안으로 제안되었다. 본 연구에서는, 자외선 경화형 혹은 상변화 잉크를 고비용의 인쇄공정을 통해 마스크를 형성하는 방법을 대신하여, 코팅과 레이저의 복합공정을 통해 마스크를 형성하는 방법에 대해 제안하도록 한다. 마스크를 형성하는 물질로서 저비용의 저융점 왁스 혹은 플루오르카본 용액을 태양전지 웨이퍼 상에 코팅 후 레이저로 선택적으로 제거하여 전극패턴을 형성하였으며, 플루오르카본 용액 코팅이 왁스 코팅보다 패턴 균일도 측면에서 우수할 뿐만 아니라 통계적으로 0.16% 태양전지 효율증대를 유발한다는 점이 발견되었다.

높은 A/R의 콘택 산화막 에칭에서 바닥모양 변형 개선에 관한 연구 (A Study on The Improvement of Profile Tilting or Bottom Distortion in HARC)

  • 황원태;김길호
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.389-395
    • /
    • 2005
  • The etching technology of the high aspect ratio contact(HARC) is necessary at the critical contact processes of semiconductor devices. Etching the $SiO_{2}$ contact hole with the sub-micron design rule in manufacturing VLSI devices, the unexpected phenomenon of 'profile tilting' or 'bottom distortion' is often observed. This makes a short circuit between neighboring contact holes, which causes to drop seriously the device yield. As the aspect ratio of contact holes increases, the high C/F ratio gases, $C_{4}F_{6}$, $C_{4}F_{8}$ and $C_{5}F_{8}$, become widely used in order to minimize the mask layer loss during the etching process. These gases provide abundant fluorocarbon polymer as well as high selectivity to the mask layer, and the polymer with high sticking yield accumulates at the top-wall of the contact hole. During the etch process, many electrons are accumulated around the asymmetric hole mouth to distort the electric field, and this distorts the ion trajectory arriving at the hole bottom. These ions with the distorted trajectory induce the deformation of the hole bottom, which is called 'profile tilting' or 'bottom distortion'. To prevent this phenomenon, three methods are suggested here. 1) Using lower C/F ratio gases, $CF_{4}$ or $C_{3}F_{8}$, the amount of the Polymer at the hole mouth is reduced to minimize the asymmetry of the hole top. 2) The number of the neighboring holes with equal distance is maximized to get the more symmetry of the oxygen distribution around the hole. 3) The dual frequency plasma source is used to release the excessive charge build-up at the hole mouth. From the suggested methods, we have obtained the nearly circular hole bottom, which Implies that the ion trajectory Incident on the hole bottom is symmetry.

질소와 진공 분위기에서 에이징 영향에 따른 불화유기박막의 나노트라이볼러지 특성 평가 (Nanotribological Characterization of Annealed Fluorocarbon Thin Film in N2 and Vacuum)

  • 김태곤;김남균;박진구;신형재
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.193-197
    • /
    • 2002
  • The tribological properties and van der Waals attractive forces and the thermal stability of films are very important characteristics of highly hydrophobic fluorocarbon (FC) films for the long-term reliability of nano system. The effect of thermal annealing on films and van der Waals attractive forces and friction coefficient of films have been investigate d in this study. It was coated Al wafer which was treated O2 and Ar that ocatfluorocyclobutane ($C_4_{8}$) and Ar were supplied to the CVD chamber in the ratio of 2:3 for deposition of FC Films. Static contact angle and dynamic contact angle were used to characterize FC films. Thickness of films was measured by variable angle spectroscopy ellipsometer (VASE). Nanotribological data was got by atomic force microscopy (AFM) to measure roughness, lateral force microscopy (LFM) to measure friction force, and force vs. distance (FD) curve to evaluate adhesion force. FC films were cured in N2 and vacuum. The film showed the slight changes in its properties after 3 hr annealing. FTIR ATR studies showed the decrease of C-F peak intensity in the spectra as the annealing time increased. A significant decrease of film thickness has been observed. The friction force of Al surface was at least thirty times higher than ones with FC films. The adhesive force of bare Al was greater than 100 nN. After deposit FC films adhesive force was decreased to 40 nN. The adhesive force of films was decreased down to 10 nN after 24 hr annealing. During 24 hr annealing in $N_2$and vacuum at $100^{\circ}C$ film properties were not changed so much.

  • PDF

오일리스 부시용 고체윤활제 개발 (Development of Solid Lubricants for Oil-less Bush)

  • 공호성;한흥구;김진욱;김경석;박종식
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.87-93
    • /
    • 2019
  • This work aims to develop a dry lubricant for oilless bush, especially a solid lubricant, thereby creating a coating method with improved properties of anti-friction and load-carrying capacity without oil lubrication. In this work, spherical-shaped powders of thermosetting resin such as polyimide (PI) are mixed with a binder matrix obtained by mixing a fluorocarbon compound resin such as Polytetrafluoroethylene (PTFE) or Ethylene tetra fluoro ethylene (ETFE) with itself or with a non-fluorocarbon thermoplastic resin such as Polyether ether ketone (PEEK). And these dry lubricant mixtures are thickly coated (200-300 mm in the thickness) on the inner surface of the bush by using a wet-typed air-spray deposition method. It was found that the load-carrying capacity of the solid lubricant for excavator bush (60 mm in diameter) that operates under a high load condition (at 40 MPa) is greatly improved owing to the spherical-shaped powders of thermosetting resin. In addition, the coefficient of friction at the sliding surface is also reduced less than 0.1. Thick coating also lowers the contact stress at the edge of a bush that results in better tribological performances. The result suggests that the lubrication performance and durability life of the bush can be remarkably improved even without lubrication (oil or grease).

Effect of length of alkyl chain consisting of fluorine and carbon in self-assembled monolayers

  • Park, Sang-Geon;Lee, Won Jae;Lee, Won Jae;Kim, Tae Wan
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.361-368
    • /
    • 2018
  • We investigated the interfacial properties of fluorocarbon self-assembled monolayers (FC-SAMs) with different alkyl chain lengths. It was found that the substrate characteristics were changed rapidly with the fabrication time and temperature of the SAM. FC-3SAM, which has the shortest alkyl chain in this study, showed a contact angle of $54.1^{\circ}$ when it was fabricated in an electric oven at $60^{\circ}C$ for the first minute. The FC-3SAM showed a contact angle of up to $76.9^{\circ}$ when it was fabricated in an electric oven at the same temperature condition for 180 minutes. FC-10SAM, which has the longest alkyl chain in this study, showed a contact angle of $64.7^{\circ}$ when it was fabricated at a temperature condition of $60^{\circ}C$ for 1 minute, and a contact angle of $98.7^{\circ}C$ at a temperature condition of $60^{\circ}C$ for 180 minutes. It was found that the FC-10SAM shows an increased contact angle and hydrophobic properties due to a well-aligned molecular structure resulting from a strong van der Waals force. In contrast, the FC-3SAM shows a small contact angle due to the intermolecular disorder resulting from a weak van der Waals force. The average roughness of FC-SAMs was investigated using AFM. The surface roughness of FC-SAMs, which verifies the results of contact angle, was confirmed. At a fabrication time of 120 minutes, the FC-10SAM showed an improvement in average roughness by 62% compared to that of FC-3SAM due to its good alignment.

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

Fault Detection of Plasma Etching Processes with OES and Impedance at CCP Etcher

  • Choi, Sang-Hyuk;Jang, Hae-Gyu;Chae, Hee-Yeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.257-257
    • /
    • 2012
  • Fault detection was carried out in a etcher of capacitive coupled plasma with OES (Optical Emission Spectroscopy) and impedance by VI probe that are widely used for process control and monitoring at semiconductor industry. The experiment was operated at conventional Ar and Fluorocarbon plasma with variable change such as pressure and addition of N2 and O2 to assume atmospheric leak, RF power and pressure that are highly possible to impact wafer yield during wafer process, in order to observe OES and VI Probe signals. The sensitivity change on OES and Impedance by VI probe was analyzed by statistical method including PCA to determine healthy of process. The main goal of this study is to find feasibility and limitation of OES and Impedances for fault detection by shift of plasma characteristics and to enhance capability of fault detection using PCA.

  • PDF

PECVD와 ICP에 의해 증착된 불화유기박막의 나노트라이볼러지 특성 비교분실 (Comparative Analysis of Nanotribological Characterization of Fluorocarbon Thin Film by PECVD and ICP)

  • 김태곤;이수연;박진구;신형재
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.226-229
    • /
    • 2001
  • 현재 초소형 정밀기계(MEMS;Microelectromechanical System) 소자의 가장 큰 문제점으로 대두되고 있는 점착현상을 방지하기 위하여 불화유기박막을 증착하였다. Octafluorocyclobutane(C$_4$F$_{8}$)을 소스가스를 PECVD (Plasma Enhanced CVD)와 ICP (Inductively Coupled Plasma)를 이용하여 증착하였다. 여기에 Ar을 첨가하여 플라즈마의 반응성을 높여주었다. 형성된 불화유기박막의 나노트라이볼러지 특성을 살펴보기 위하여 AFM을 통하여 증착시킨 시편의 topography를 살펴보았다. 그리고 박막의 antiadhesion의 정도를 살펴보기 위하여 cantilever와 박막의 표면 사이에 존재하는 interaction force를 측정 하였고 AFM의 force curve mode를 이용하였다 PECVB를 이용하여 증착된 박막은 ICP를 이용한 박막보다 균일하지 못한 박막을 보였으며 attractive force가 강한 것으로 사료된다.

  • PDF

Surface Analysis of Aluminum Bonding Pads in Flash Memory Multichip Packaging

  • Son, Dong Ju;Hong, Sang Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권4호
    • /
    • pp.221-225
    • /
    • 2014
  • Although gold wire bonding techniques have already matured in semiconductor manufacturing, weakly bonded wires in semiconductor chip assembly can jeopardize the reliability of the final product. In this paper, weakly bonded or failed aluminum bonding pads are analyzed using X-ray photoelectron spectroscopy (XPS), Auger electron Spectroscopy (AES), and energy dispersive X-ray analysis (EDX) to investigate potential contaminants on the bond pad. We found the source of contaminants is related to the dry etching process in the previous manufacturing step, and fluorocarbon plasma etching of a passivation layer showed meaningful evidence of the formation of fluorinated by-products of $AlF_x$ on the bond pads. Surface analysis of the contaminated aluminum layer revealed the presence of fluorinated compounds $AlOF_x$, $Al(OF)_x$, $Al(OH)_x$, and $CF_x$.