• Title/Summary/Keyword: Fluorine-doped tin oxide

Search Result 70, Processing Time 0.026 seconds

Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application

  • Kwak, Dong-Joo;Moon, Byung-Ho;Lee, Don-Kyu;Park, Cha-Soo;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.684-687
    • /
    • 2011
  • In this study, we investigate the photovoltaic performance of transparent conductive indium tin oxide (ITO), titanium-doped indium oxide (ITiO), and fluorine-doped tin oxide (FTO) films. ITO and ITiO films are prepared by radio frequency magnetron sputtering on soda-lime glass substrate at $300^{\circ}C$, and the FTO film used is a commercial product. We measure the X-ray diffraction patterns, AFM micrographs, transmittance, sheet resistances after heat treatment, and transparent conductive characteristics of each film. The value of electrical resistivity and optical transmittance of the ITiO films was $4.15{\times}10^{-4}\;{\Omega}-cm$. The near-infrared ray transmittance of ITiO is the highest for wavelengths over 1,000 nm, which can increase dye sensitization compared to ITO and FTO. The photoconversion efficiency (${\eta}$) of the dye-sensitized solar cell (DSC) sample using ITiO was 5.64%, whereas it was 2.73% and 6.47% for DSC samples with ITO and FTO, respectively, both at 100 mW/$cm^2$ light intensity.

Electrodeposition of Gold on Fluorine-Doped Tin Oxide: Characterization and Application for Catalytic Oxidation of Nitrite

  • Rahman, Md. Mahbubur;Li, Xiao-Bo;Lopa, Nasrin Siraj;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2072-2076
    • /
    • 2014
  • Sub-micrometer size gold particles were electrodeposited on a transparent fluorine-doped tin oxide (FTO) from acetonitrile solution containing $AuCl_4{^-}$ and tetramethylammonium tetraflouroborate (TMATFB) for detecting $NO_2{^-}$. A series of two-electron ($2e^-$) and one-electron ($1e^-$) reductions of the $AuCl_4{^-}-AuCl_2{^-}-Au$ redox systems were observed at FTO and a highly stable and homogeneous distribution of Au on FTO (Au/FTO) was obtained by stepping the potential from 0 to -0.55 V (vs. Ag/$Ag^+$). The Au/FTO electrode exhibited sufficiently high catalytic activity toward the oxidation of $NO_2{^-}$ with a detection limit (S/N = 3) and sensitivity of 2.95 ${\mu}M$ and 223.4 ${\mu}A{\cdot}cm^{-2}{\cdot}mM^{-1}$, respectively, under optimal conditions. It exhibited an interference-free signal for $NO_2{^-}$ detection with excellent recoveries from real samples.

Electrical and Optical Properied of Tin Oxide Films Prepared by Ozone Assisted-MOCVD (Ozone Assisted-MOCVD로 제작된 산화주석막의 전기적 광학적 특성)

  • 배정운;이상운;송국현;박정일;박광자;염근영
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.2
    • /
    • pp.109-116
    • /
    • 1998
  • Highly transparent conductive pure and fluorine-doped tin oxide(FT0, $SnO_2$ : F) films have been prepared by low pressure metal organic chemical vapor deposition (LP-MOCVD) from various mixtures of tetramethyitin(TMT) with oxygen or oxygen containing ozone. The properties of TO films have been changed with the variation of gases, flow rate, and substrate temperature. The nsing of oxygen containing ozone instead of pure oxygen, reduced substrate temperature by 100-$150^{\circ}C$ while maintaining same thickness. The films prepared by using ozone showed the resistivity in the range from $10^~2$ to $10^{~3}\Omega$cm, and the mobiiity from 10 to $14\textrm{cm}^2$/Vs. Fluorine-doped tin oxide films had properties such as the resistivity about $10^{-4}\Omega$cm, and the mobility from 14 to $19\textrm{cm}^2$/Vs.

  • PDF

Optical and Electrical Properties of Fluorine-Doped Tin Oxide Prepared by Chemical Vapor Deposition at Low Temperature (저온 증착된 불소도핑 주석 산화 박막의 광학적·전기적 특성)

  • Park, Ji Hun;Jeon, Bup Ju
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.517-524
    • /
    • 2013
  • The electrical and optical properties of fluorine-doped tin oxide films grown on polyethylene terephthalate film with a hardness of 3 using electron cyclotron resonance plasma with linear microwave of 2.45 GHz of high ionization energy were investigated. Fluorine-doped tin oxide films with a magnetic field of 875 Gauss and the highest resistance uniformity were obtained. In particular, the magnetic field could be controlled by varying the distribution in electron cyclotron deposition positions. The films were deposited at various gas flow rates of hydrogen and carrier gas of an organometallic source. The surface morphology, electrical resistivity, transmittance, and color in the visible range of the deposited film were examined using SEM, a four-point probe instrument, and a spectrophotometer. The electromagnetic field for electron cyclotron resonance condition was uniformly formed in at a position 16 cm from the center along the Z-axis. The plasma spatial distribution of magnetic current on the roll substrate surface in the film was considerably affected by the electron cyclotron systems. The relative resistance uniformity of electrical properties was obtained in film prepared with a magnetic field in the current range of 180~200A. SEM images showing the surface morphologies of a film deposited on PET with a width of 50 cm revealed that the grains were uniformly distributed with sizes in the range of 2~7 nm. In our experimental range, the electrical resistivity of film was able to observe from $1.0{\times}10^{-2}$ to $1.0{\times}10^{-1}{\Omega}cm$ where optical transmittance at 550 nm was 87~89 %. These properties were depended on the flow rate of the gas, hydrogen and carrier gas of the organometallic source, respectively.

ZnO Nanostructure Characteristics by VLS Synthesis (VLS 합성법을 이용한 ZnO 나노구조의 특성)

  • Choi, Yuri;Jung, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.617-621
    • /
    • 2009
  • Zinc oxide (ZnO) nanorods were grown on the pre-oxidized silicon substrate with the assistance of Au and the fluorine-doped tin oxide (FTO) based on the catalysts by vapor-liquid-solid (VLS) synthesis. Two types of ZnO powder particle size, 20nm, $20{\mu}m$, were used as a source material, respectively The properties of the nanorods such as morphological characteristics, chemical composition and crystalline properties were examined by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and field-emission scanning electron microscope (FE-SEM). The particle size of ZnO source strongly affected the growth of ZnO nanostructures as well as the crystallographic structure. All the ZnO nanostructures are hexagonal and single crystal in nature. It is found that $1030^{\circ}C$ is a suitable optimum growth temperature and 20 nm is a optimum ZnO powder particle size. Nanorods were fabricated on the FTO deposition with large electronegativity and we found that the electric potential of nanorods rises as the ratio of current rises, there is direct relationship with the catalysts, Therefore, it was considered that Sn can be the alternative material of Au in the formation of ZnO nanostructures.

Electrochemical Properties of Fluorine-Doped Tin Oxide Nanoparticles Using Ultrasonic Spray Pyrolysis (초음파 분무 열 분해법을 통해 제조된 불소 도핑 된 주석 산화물 나노 입자의 전기화학적 특성)

  • Lee, Do-Young;Lee, Jung-Wook;An, Geon-Hyoung;Riu, Doh-Hyung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.258-265
    • /
    • 2016
  • Fluorine-doped tin oxide (FTO) nanoparticles have been successfully synthesized using ultrasonic spray pyrolysis. The morphologies, crystal structures, chemical bonding states, and electrochemical properties of the nanoparticles are investigated. The FTO nanoparticles show uniform morphology and size distribution in the range of 6-10 nm. The FTO nanoparticles exhibit excellent electrochemical performance with high discharge specific capacity and good cycling stability ($620mAhg^{-1}$ capacity retention up to 50 cycles), as well as excellent high-rate performance ($250mAhg^{-1}$ at $700mAg^{-1}$) compared to that of commercial $SnO_2$. The improved electrochemical performance can be explained by two main effects. First, the excellent cycling stability with high discharge capacity is attributed to the nano-sized FTO particles, which are related to the increased electrochemical active area between the electrode and electrolyte. Second, the superb high-rate performance and the excellent cycling stability are ascribed to the increased electrical conductivity, which results from the introduction of fluorine doping in $SnO_2$. This noble electrode structure can provide powerful potential anode materials for high-performance lithiumion batteries.

Electrical and Optical Properties of Fluorine-Doped Tin Oxide Films Fabricated at Different Substrate Rotating Speeds during Ultrasonic Spray Pyrolysis Deposition (초음파 분무 열분해 증착 중 기판 회전 속도에 따른 플루오린 도핑 된 주석산화물 막의 전기적 및 광학적 특성)

  • Ki-Won Lee;yeong-Hun Jo;Hyo-Jin Ahn
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).

Influence of Fluorine-Doped Tin Oxide Coated on NiCrAl Alloy Foam Using Ultrasonic Spray Pyrolysis Deposition (초음파 분무 열분해법을 이용한 NiCrAl 합금 폼에 코팅된 불소 도핑된 주석 산화물의 영향)

  • Shin, Dong-Yo;Bae, Ju-Won;Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.392-397
    • /
    • 2017
  • Fluorine-doped tin oxide (FTO) coated NiCrAl alloy foam is fabricated using ultrasonic spray pyrolysis deposition (USPD). To confirm the influence of the FTO layer on the NiCrAl alloy foam, we investigated the structural, chemical, and morphological properties and chemical resistance by using USPD to adjust the FTO coating time (12, 18, and 24 min). As a result, when an FTO layer was coated for 24 min on NiCrAl alloy foam, it was found to have an enhanced chemical resistance compared to those of the other samples. This improvement in the chemical resistance of using USPD NiAlCr alloy foam can be the result of the existence of an FTO layer, which can act as a protection layer between the NiAlCr alloy foam and the electrolyte and also the result of the increased thickness of the FTO layer, which enhances the diffusion length of the metal ion.