• Title/Summary/Keyword: Fluoride glass

Search Result 97, Processing Time 0.019 seconds

A Study For The Simple Method In Dividing The Layers of Fiber-reinforced Plastic (폐 FRP선박의 재활용공정에서 용이한 면포추출공정을 위한 화학적 처리 방법에 관한 연구)

  • Lee, Seung-Hee;Kim, Yong-Seop;Yoon, Koo-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.43-46
    • /
    • 2010
  • As one of the methods for recycling the FRP used for the small and medium-sized waste ships, separation of the roving layer from the mat has some merit in a sense of the recycling energy and the environmental effects. Similar characteristics between the roving and the mat make the mechanically automatic differentiation difficult. They, however, contain different ratio of the resin and the glass and the thickness. In this study photo physical differentiation between the two layers has been made using (1) boiling concentrated sulfuric acid which can dissolve the resin in the FRP layer and (2) hydrogen fluoride(HF) solution which can reacts with $SiO_2$ fragments of the glass. Furthermore coloring the FRP sample with water-soluble dye following the HF treatment makes the roving layer more distinguishable photophysically. The implementation of HF treatment has been successfully tested in this study.

Effect of Physical Properties and Bacterial Adherence Inhibition of Pit and Fissure Sealant Containing Bioactive Glass Nano Particles(BGn) (생체활성 유리 나노입자 첨가량에 따른 치면열구전색제의 물성평가와 세균부착 억제 효과)

  • Jun, Soo-Kyung;Kim, Dong-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.542-549
    • /
    • 2018
  • In this study BGn-incorporated non-fluoride release of pit and fissure sealant $Concise^{TM}$ was developed to improve the mechanical properties and promote antibacterial effect of fit and fissure sealant with the original material. The mechanical properties and antibacterial activity of BGn incorporating vary-ing amounts bioactive glass nano particles(BGn) (0,0.5,1.0 and 2.0 wt% in sealant) were characterized composition of the resulting were investigated. The solubility to aid absorption was calculated by weighing specimens with a diameter of 10 mm and a thickness of 2 mm according to ISO 4049 (2009). The antimicrobial effect was evaluated using three strains of S. mutans, S. aureus and E. coli. The absorbance of the test results was as high as the addition of BGn increased, and the lower the solubility as the solubility was added(p<0.05). Adhesion experiment results S. mutans in contrast to the control group $Concise^{TM}$, BGn-added experimental group showed a somewhat lower adherent surface but no statistically significant difference was observed (p<0.05). However S. aureus and E. coli statistical analysis indicated a significant difference for antibacterial agents between control and BGn containing(p<0.05). It seems that this BGn proved that even a antibacterial effect was demonstrated. Therefore, it was suggest that the additional effects of BGn and research on a wide range of substances.

Fluorine-releasing of Dental Restoration Materials in which the Fluorine is Contained (불소 유리로 본 불소 함유 수복재)

  • Kim, Joo-Won
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.311-322
    • /
    • 2012
  • Restoration materials used to investigate effects of fluorine such as enamel strengthening and anti-caries effects in several types of dental restoration materials were five kinds including Ionoseal(VOCO GmbH, Cuxhaven, Germany), Fuji Filling LC(GC Co. Tokyo, Japan), Quadrant Universal LC(CAVEX Holland BV, Netherlands), PermaCem$^{(R)}$(DMG, Hamburg, Germany) and Dyract$^{(R)}$ AP(Dentsply GmbH, Germany), and the amount of fluorine-releasing was measured with ICS-5000 Reagent-FreeTM Ion Chromatography(RFICTM, Dionex, U.S.A.). The results of this study are as follows. 1. In all types of restoration materials, the amount of fluoride-releasing was reduced with time passage and it was declined sharply to show significance in four weeks. Fuji Filling LC(12.445PPM) or resin-reinforced glass ionomer and PermaCem$^{(R)}$(16.121PPM) or compomer were found to release fluorine for a long term(P<.001). 2. Ionoseal(0.887PPM) or glass ionomer and Quadrant Universal LC(0.957PPM) or composite resin released a few fluorine of 1PPM or less than 1PPM after one week, and Dyract$^{(R)}$ AP or compomer released fluorine of 8.631PPM in one week and its amount of releasing decreased dramatically in two and four week by recording 0.175PPM and 0.116PPM, respectively. Therefore, the effect of releasing fluorine in four weeks was observed to be poor (P<.001). 3. Fuji Filling LC or resin-reinforced glass ionomer and PermaCem$^{(R)}$ or compomer released fluorine of 33.372 and 1.902PPM, respectively in one week and their amount of releasing increased to be 36.371 and 18.223PPM, respectively in two weeks. So, their amount of fluorine-releasing recorded the highest levels in two weeks(P<.001).

Capacitance and Output Current Control by CNT Concentration in the CNT/PVDF Composite Films for Electronic Devices (전자소자로의 응용을 위한 CNT/PVDF 복합막에서 CNT 조성에 의한 정전용량과 출력전류 제어)

  • Lee, Sunwoo;No, Im-Jun;Shin, Paik-Kyun;Kim, Yongjin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1115-1119
    • /
    • 2013
  • The carbon nanotube/poly-vinylidene fluoride (CNT/PVDF) composite films for the use of electronic devices were fabricated by spray coating method using the CNT/PVDF solution, which was prepared by adding PVDF pellets into the CNT dispersed N-Methyl-2-pyrroli-done (NMP) solution. The CNT/PVDF composite films were peeled off from the glass substrate and were investigated by the scanning electron microscopy, which revealed that the CNTs were uniformly dispersed in the PVDF films and thickness of the films were approximately $20{\mu}m$. The capacitance of the CNT/PVDF films increased dramatically by adding CNTs into the PVDF matrix, and finally saturated approximately 1880 pF. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0 ~ 0.04 wt%. Therefore we can control the performance of the devices from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

Effects of NaF evaporation rate on the properties of $CuInSe_2$ thin-film solar cells

  • Park, Sun-Yong;Lee, Eun-U;Lee, Sang-Hwan;Park, Sang-Uk;Jeong, U-Jin;Kim, U-Nam;Jeon, Chan-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.36.2-36.2
    • /
    • 2010
  • A small amount of Na incorporated in $CuInSe_2$ (CIS) absorption layer has become widely accepted as a requirement for efficient polycrystalline CIS solar cells. However, there is ongoing argument on the role of sodium incorporated in the absorber. In this paper, CIS absorption layers have been deposited using the three-stage co-evaporation process on Mo coated non-Alkali glass substrates. The NaF was evaporated during the second-stage with various fluxes. This paper is focusing on differences of micro-structure and composition ratio of the absorber realized with different Na contents and the variation of electrical properties of the cells with the corresponding absorbers. The analytical results of x-ray diffraction (XRD) patterns, field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS) and current-voltage characteristics will be discussed to investigate the effect of NaF flux on the CIS absorber formation and its cell performance.

  • PDF

Characteristics of Li-ion battery using polymeric gel electrolytes reinforced with glass fiber cloth (유리섬유 cloth가 보강된 겔상의 고분자 필름을 전해질로 이용한 리튬이온 전지의 특성)

  • Park Ho Cheol;Kim Sang Hern;Chun Jong Han;Ko Jang Myoun;Jo Soo Ik;Sohn Hun-Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.100-103
    • /
    • 2000
  • Polymeric gel electrolytes based on polyacrylronitile blended with poly(vinylidene fluoride-co-hexafluoro-propylene)(P(VdF-co-HFP), which were reinforced with glass fiber cloth(GFC) to increase the mechanical strength, were prepared for the practical use in secondary battery. Test cell consisting of $LiCoO_2$ as a cathode and mesophase pich-based ca.bon fiber (MCF) as an anode material showed a capacity of 110 mAh/g based on the cathode weight at 0.2C rate at room temperature. Over $80\%$ of initial capacity was retained after 400cycles, indicating that GFC is suitable for a reinforcing material to increase the mechanical strength of gel based electrolytes.

[ $SiO_2$ ] Effect on the Electrochemical Properties of Polymeric Gel Electrolytes Reinforced with Glass Fiber Cloth ($SiO_2$가 유리섬유로 보강된 고분자 겔 전해질의 전기 화학적 특성에 미치는 영향)

  • Park Ho Cheol;Kim Sang Heon;Chun Jong Han;Kim Dong Won;Ko Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.6-9
    • /
    • 2001
  • [ $SiO_2$ ] effect on the electrochemical properties of polymeric gel electrolytes(PGEs) reinforced with glass fiber cloth(GFC) was investigated . PGEs were composed of polyacrylronitrile(PAN), poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)), $LiClO_4$ and three kind of plasticizer(ethylene carbonate, dietyl carbonate, propylene carbonate). $SiO_2$ was added to PGEs in the weight fraction of 10, 20, $30\%$ respectively. PGEs containing $SiO_2$ showed conductivity of over $10^{-3}S/cm\;at\;23^{\circ}C$ and electrochemical stability window to 4.8V. In the impedance spectra of the cells, which were constructed by lithium metals as electrodes, interfacial resistance increased due to growth of passivation layer during storage time and remarkable difference was not observed with content of $SiO_2$. In the impedance spectra of the lithium ion polymer batteries consisted of $LiClO_2$ and mesophase pitch-based carbon fiber(MCF), ohmic cell resistance of $SiO_2-free$ PGE was changed continuously with number of cycle, but those of $SiO_2-dispersed$ PGEs were not. Discharge capacity of the PGE containing $20wt\%\;SiO_2$ showed 132 mAh/g at 0.2C rate and $85\%$ of discharge capacity was retained at 2C rate.

SHEAR BOND STRENGTH OF GIOMER AND SELF-ETCHING PRIMER ON THE DENTIN (Giomer와 자가 산부식 접착제의 상아질에 대한 전단 결합강도)

  • Yoon, Eun-Young;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.4
    • /
    • pp.422-428
    • /
    • 2010
  • Giomer is fluoride-releasing, resin-based dental materials that comprise PRG(pre-reacted glass ionomer) filler. The purpose of this study was to evaluate the shear bond strength of Giomer using self-etching primer systems to bovine dentin. Bovine incisors were mounted in self-curing orthodontic resin and the facial surfaces were wet ground on SIC paper to expose the dentin. Total 100 samples were made and divided randomly into 4 groups, Giomer group(I), Composite resin group(II) and Compomer group(III), Giomer and single bottle adhesive group(IV). The shear bond strengths of 25 samples per each group were measured using universal testing machine. And data were analyzed statistically with One-way ANOVA and Scheffe test. Giomer group(I) showed the significantly higher bond strength than Compomer group(III)(p<0.05). There was no significant difference between Giomer group(I) and Composite resin group(II)(p>0.05). And there is no significant difference between gourp(I) and group(IV). Based on the results of present study, the use of Giomer as an esthetic restorative material for primary teeth might be justified. It is considered that more study about the fluoride releasing ability is needed to evaluate the anticariogenic effect of giomer.

REMINERALIZATION EFFECT OF FUJI VII GLASS IONOMER CEMENT (Fuji VII 글래스 아이오노머 시멘트의 재광화 효과)

  • Kim, Young-Jin;Lee, Ju-Hyun;Seo, Hyun-Woo;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.4
    • /
    • pp.653-660
    • /
    • 2006
  • Fuji VII is a glass-ionomer cement specially targeted for early protection in erupting first and second molars. Properties of Fuji VII such as very high level of fluoride release, low viscosity and no need to preliminarily etch the substrate would be useful to erupting molars with primary pit and fissure caries or hypoplastic area for preventive goal or remineralization. The purpose of this study were to evaluate remineralization of Fuji VII glass ionomer cement and to compare with one of other restorative materials such as conventional glass ionomer cement, resin-modified glass ionomer cement, compomer and composite resin. Forty-two extracted human molars were used for this study. All teeth were immersed in demineralizing solution for 48 hours after Class V cavity preparation was made on sound proximal surface. The teeth were randomly divided into six groups and restored with Fuji VII, Fuji II, Fuji II LC improved, F2000, $Filtek^{TM}$ Z250 and control group was unrestored. The middle area with $130{\pm}20{\mu}m$ thickness was separated from specimen using microtome and demineralized area was photographed under polarized microscope. Separated area was relocated to specimen and stored in artificial saliva, After four weeks, changes of demineralized area were observed and compared to them restorated immediately. The results from the this study can be summarized as follows ; 1. Fuji VII, Fuji II, Fuji II LC improved have more prominent remineralization effect than F2000, $Filtek^{TM}$ Z250, control group. 2. No significant differences in remineralization effect are seen between Fuji VII and Fuji II, Fuji II LC improved.

  • PDF

A Study on the Chemical Pre-Treatments Suitable for the Layer Differentiation of FRP Waste (폐FRP의 층간분리를 위한 전처리방법에 관한 연구)

  • Lee, Seung-Hee;Lee, Jung-Ki;Kim, Yong-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • As one of the methods for recycling the FRP from the waste ships, separation of roving layer from the mat has some merits in a sense of the eco-friendly and economical recycling process. Similar characteristics, however, between the roving and the mat even with different ratio of the resin and the glass and the thickness of the roving, much thinner than the mat, make the mechanically automatic differentiation difficult. In this study spectrochemical differentiation between the two layers has been made using boiling concentrated sulfuric acid, methanol and isopropanol solution saturated with KOH, or hydrogen fluoride (HF) solution. Furthermore efficiently coloring water-soluble dye following the HF treatment makes the roving layer more distinguishable photophysically. The layer differentiation and the automatic layer distraction move up the date of simple and automatic separation process for the waste FRP.