• Title/Summary/Keyword: Fluorescent label

Search Result 17, Processing Time 0.021 seconds

Microfluidic immunoassay using superparamagnetic nanoparticles in an enhanced magnetic field gradient (강화된 자기장 구배 하에서 나노자성입자를 이용한 미세유체 기반의 면역 측정)

  • Hahn, Young-Ki;Kang, Joo-H.;Kim, Kyu-Sung;Park, Je-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.158-163
    • /
    • 2006
  • This paper reports a novel immunoassay method using superparamagnetic nanoparticles and an enhanced magnetic field gradient for the detection of protein in a microfluidic device. We use superparamagnetic nanoparticles as a label and fluorescent polystyrene beads as a solid support. Based on this platform, magnetic force-based microfluidic immunoassay is successfully applied to analyze the concentration of IgG as model analytes. In addition, we present ferromagnetic microstructure connected with a permanent magnet to increase magnetic flux density gradient (dB/dx, ${\sim}10^{4}$ T/m), which makes limit of detection reduced. The detection limit is reduced to about 1 pg/mL.

Polarity Probing Two-Photon Fluorophores Based on [2.2]Paracyclophane

  • Woo, Han-Young;Korystov, Dmitry;Jin, Young-Eup;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2253-2260
    • /
    • 2007
  • A series of tetra donor substituted [2.2]paracyclophane-based two-photon absorption (TPA) fluorophores were synthesized in neutral and cationic forms. The imaging activity of overall set of fluorophores was studied by the two-photon induced fluorescence (TPIF) method in a range of solvents. We also measured a clear progression toward a longer photoluminescence lifetime with increasing solvent polarity (intrinsic photoluminescence lifetime, τi: ~2 ns in toluene → 12-16 ns in water). The paracyclophane fluorophores with this unique property can be utilized as an optical polarity probe for the biomolecular substrates. The combined measurement of the two-photon fluorescence microscopy (TPM) cell image and TPIF lifetime can give us a better understanding of the biological processes and local environments in the cells.

Environmental Exposure of Sperm Sex-Chromosomes: A Gender Selection Technique

  • Oyeyipo, Ibukun P.;van der Linde, Michelle;du Plessis, Stefan S.
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.315-323
    • /
    • 2017
  • Preconceptual sex selection is still a highly debatable process whereby X- and Y-chromosome-bearing spermatozoa are isolated prior to fertilization of the oocyte. Although various separation techniques are available, none can guarantee 100% accuracy. The aim of this study was to separate X- and Y-chromosome-bearing spermatozoa using methods based on the viability difference between the X- and Y-chromosome-bearing spermatozoa. A total of 18 experimental semen samples were used, written consent was obtained from all donors and results were analysed in a blinded fashion. Spermatozoa were exposed to different pH values (5.5, 6.5, 7.5, 8.5, and 9.5), increased temperatures ($37^{\circ}C$, $41^{\circ}C$, and $45^{\circ}C$) and ROS level ($50{\mu}M$, $750{\mu}M$, and $1,000{\mu}M$). The live and dead cell separation was done through a modified swim-up technique. Changes in the sex-chromosome ratio of samples were established by double-label fluorescent in situ hybridization (FISH) before and after processing. The results indicated successful enrichment of X-chromosome-bearing spermatozoa upon incubation in acidic media, increased temperatures, and elevated $H_2O_2$. This study demonstrated the potential role for exploring the physiological differences between X-and Y-chromosome-bearing spermatozoa in the development of preconceptual gender selection.

Polydiacetylene-Based Chemo-/Biosensor of Label Free System with Various Sensing Tools (다양한 감지 방법을 갖고 있는 폴리디아세틸렌 기반 비표지 화학/바이오센서)

  • Park, Hyun-Kyu;Park, Hyun-Gyu;Chung, Bong-Hyun
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.409-413
    • /
    • 2007
  • Polydiacetylene(PDA)-based sensors possess a number of properties that can be successfully applied for label-free detection system. PDA is one of the most attractive color-generating materials, with growing applications as sensors. Here we introduce various PDA-based devices, used as biosensor, chemosensor, thermosensor, and optoelectronics sensor. In general, PDA liposomes and films are closely packed and properly designed for polymerization via 1,4-addition reaction to form an ene-yne alternating polymer chain. PDA-based two/three dimensional structures have been used for colorimetric or fluorescent devices, sensing biological as well as chemical components. This color-generating material also present a very high charge carrier mobility, allowing its application as field-effect transistor (FET). The immobilized PDA structures or films have distinct advantages for the detection of low concentration target molecules over the aqueous solution-based detection systems. In the present review, reported detection methods by using various PDA structures are summarized with updated references.

Alternative Immunossays

  • Barnard, G.J.R.;Kim, J.B.;Collins, W.P.
    • Korean Journal of Animal Reproduction
    • /
    • v.9 no.2
    • /
    • pp.133-139
    • /
    • 1985
  • An immunoassay may be defined as an analytical procedure involving the competitive reaction between a limiting concentration of specific antibody and two populations of antigen, one of which is labelled or immobillized. The advent of immunoassay has revolutionised our knowledge of reproductive physiology and the practice of veterinary and clinical medicine. Radioimmunoassay (RIA) was the first of these methods to be developed, which meausred the analyte with good sensitivity, accuracy and precision (1,2). The essential components of RIA are:-(i) a limited concentration of antibodies, (ii) a reference preparation, and (iii) an antigen labelled with a radioisotope (usually tritium or iodine-125). Most procedures invelove isolating the antibody-bound fraction and measuring the amount of labelled antigen. Good facilities are available for scintilltion counting, data reduction nd statistical analysis. RIA is undergoing refinement through:-(i) the introduction of new techniques to separate the antibody-bound and free fractions which minimize the misclassification of labelled antigen into these compartments, and the amount of non-specfic binding. (3), (ii) the development of non-extration for the measurement of haptens (4), (iii) the determination of a, pp.rent free (i.e. non-protein bound) analytes (5), and (iv) the use of monoclonal antibodies(6). In 1968, Miles and Hales introduced in important new type of immunoassay which they termed immunora-diometric assay (IRMA) based on t도 use of isotopically labelled specific antibodies(7) in a move from limited to excess reagent systems. The concept of two-site IRMAs (with a capture antibody on a solid-phase, and a second labelled antibody to a different antigenic determinant of the analyte) has enabled the development of more sensitive and less-time consuming methods for the measurement of protein hormones ovar wide concentration of analyte (8). The increasing use of isotopic methos for diverse a, pp.ications has exposed several problems. For example, the radioactive half-life and radiolysis of the labelled reagent limits assay sensitivity and imposes a time limit on the usefulness of a kit. In addition, the potential health hazards associated with the use and disposal of radioactive cmpounds and the solvents and photofluors necessary for liquid scientillation counting are incompatable with the development of extra-laboratory tests. To date, the most practical alternative labels to radioisotopes, for the measurement of analytes in a concentration > 1 ng/ml, are erythrocytes, polystyrene particiles, gold sols, dyes and enzymes or cofactors with a visual or colorimetric end-point(9). Increased sensitivity to<1 pg/ml may be obtained with fluorescent and chemiluminescent labels, or enzymes with a fluorometric, chemiluminometric or bioluminometric end-point. The sensitivity of any immunoassay or immunometric assay depends on the affinity of the antibody-antigen reaction, the specific activity of the label, the precision with which the reagents are manipulated and the nonspecific background signal (10). The sensitivity of a limited reagent system for the measurement of haptens or proteins is mainly dependent upon the affinity of the antibodies and the smalleest amount of reagent that may be manipulated. Consequently, it is difficult in practice to improve on the sensitivity obtained with iodine-125 as the label. Conversely, with excess reagent systems for the measurement of proteins it is theoretically possible to increase assay sensitivity at least 1000 fold with alternative luminescent labels. To date, a 10-fold improvement has been achieved, and attempts are being made to reduce the influence of other variables on the specific signal from the immunoreaction.

  • PDF

Effects of Angelica sinensis Root on Longitudinal Bone Growth Rate in Adolescent Female Rats

  • Lee, Donghun;Kim, Hocheol
    • The Korea Journal of Herbology
    • /
    • v.32 no.1
    • /
    • pp.69-74
    • /
    • 2017
  • Objectives : This study aimed to investigate the effects of Angelicae sinensis Radix on longitudinal bone growth rate in rats. We have screened traditional medicinal herbs to develop the longitudinal bone growth stimulator by well-established rat model. A. sinensis was identified as one of the effective herbs in the screening process. Methods : Adolescent female rats were administered A. sinensis at doses of 30 mg/kg and 300 mg/kg for 10 consecutive days. To observe the rate of longitudinal bone growth, tetracycline was injected intraperitoneally on day 8 to stain a fluorescent band on the anew formed bone. To elucidate the mode of action, we observed insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) expression after A. sinensis administration in growth plate. Results : In the 300 mg/kg A. sinensis group, the length between the proximal endpoint of the tetracycline label and the division line between growth plate and bone was significantly increased compared with vehicle-treated control group. Height of the proximal tibial growth plate was higher in the A. sinensis group compared with control group. A. sinensis also upregulated the expressions of IGF-1 and BMP-2 in the proliferative zone and hypertrophic zone of the proximal tibial growth plate. Conclusions : A. sinensis increases longitudinal bone growth rate in rats. According to immunohistochemistry, A. sinensis increases local IGF-1 and BMP-2 expressions in the growth plate which can be considered as direct stimulation of GH on the local growth plate.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF