• Title/Summary/Keyword: Fluorescent aerosol

Search Result 3, Processing Time 0.016 seconds

Trends of Deep UV-LED Technology for the Pathogen and Biotoxin Aerosol Detection System (병원균 및 생물독소 탐지시스템을 위한 원자외선 LED 기술동향)

  • Chong, Eugene;Jeong, Young-Su;Choi, Kibong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • The humans are under attack involving the hazardous environment and pathogen/biotoxin aerosol that is realistic concerned. A portable, fast, reliable, and cheap Pathogen and Biotoxin Aerosol threat Detection(PBAD) trigger is an important technology for detect-to-protect and detect-to-treat system because the man-made biological terror is a fast and lethal infection. The ultraviolet C(UVC) wavelengths light source is key issue for PBAD that is sensitive because of strong fluorescence cross section from fluorescent amino acids in proteins such as tryptophan and tyrosine. The UVC-light emitting diode(LED) is emerging light source technology as alternative to laser or lamps as they offer several advantages. This paper discussed about the design consideration of UVC-LED for the PBAD system. The UVC-LED and PBAD technology, currently available or in development, are also discussed.

Identification and Distribution of Leak Sites of Half Mask Respirators (반면형 방진마스크의 누출부위 분포조사)

  • Hur, Ji Yeun;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.180-188
    • /
    • 1994
  • This study was designed to investigate qualitatively whether respirators now being used in workplaces tit workers iflfaces well or not. Leak sites were determined after exposing the subjects to fluorescent aerosol and were analyzed by gender, brand and manufacturing nation. The results were as follows ; 1. Among those leak sites which were classified into four areas(nose, cheek, lip and chin), test aerosol was mostly deposited on the nose and the cheek areas. 2. The mean number of leak sites observed from the female subjects were 2.3 while the number were 2.2 from the male subjects. The most frequently observed leak site was nose and followed by chin, lip and cheek in descending order of frequency. 3. Among different brands of respirators, different leak sites were observed. Test subjects wearing the Sand N brands were more heavily exposed than those of wearing the D and M brands. 4. No significant difference of the number of leak sites were found between Korean-made and American-made masks. However, the most frequent leak site observed for the Korean-made ones was the nose area while it was the chin area for the American-made ones. 5. Analyses of 97 leak sites by shape showed that 27(27.8%) were point types, 54(55.7%) diffuse types and 16(16.5%) streamline types. 6. Test subjects indicated that the facepieces of Korean-made respirators were harder and smaller in size than those of American-made one. The most comfortable respirator selected was the respirator by the N Co. and the most uncomfortable one was the respirator by the D Co. This study suggests that many half-mask respirators now being used in the workplaces may not fit to workers well. Therefore, when selecting respirators, employers are advised to test respirators if they fit to workers well. And manufacturers are recommended to produce effective and comfortable respirators tested qualitatively and quantitatively not only in the laboratory but also in the field.

  • PDF

Method to Evaluate Fabric Contamination Due to Fine Dust (섬유소재의 미세먼지 오염도 평가 방법 개발에 관한 연구)

  • Hwang, So-Young;Kwon, Jin-Kyung;Kim, Young-Sil;Choi, Eun-Jin;Kim, Da-Jin;Kim, Min;Yook, Se-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.86-91
    • /
    • 2021
  • Recently, functional clothes that can reduce deposition and/or penetration of fine dust have been developed. However, there are no methods to quantitatively evaluate the performance of these clothes. In this study, we developed a method to contaminate a fabric using fine dust and established an approach to quantitatively assess the degree of particle contamination on the fabric surface. Silicate powder was chosen as the particle to simulate fine dust because silicate particles are fluorescent under UV light; therefore, they can be distinguished from any color of non-fluorescent fabric surface. A camera with a high-resolution lens system was used to scan the surface of the contaminated fabric surface, and the degree of particle contamination of the fabric surface was analyzed in terms of the pixels corresponding to the area of the fabric surface contaminated by silicate particles. Finished or unfinished nylon fabrics as well as cotton fabrics were contaminated with silicate particles, and their surfaces were scanned using the established camera. The proposed assessment method was found to be useful for quantitatively comparing the degree of particle contamination of the fabrics.