• 제목/요약/키워드: Fluorescence optical detection

검색결과 82건 처리시간 0.026초

스마트폰 기반 Mobile SmartScope를 이용한 혈구 영상 분석 (Analysis of Blood Cell Images Using Smartphone-based Mobile SmartScope)

  • 박춘호;조명옥;이동희;김중경
    • 한국가시화정보학회지
    • /
    • 제10권2호
    • /
    • pp.25-31
    • /
    • 2012
  • High-performance smartphones, equipped with a digital camera and an application software, can render conventional bench-top laboratory instruments mobile at affordable costs. As the smartphone-based devices are portable and wireless, they have wide applications especially in providing point-of-care (POC) tests in resource-constrained areas. We developed a hand-held diagnostic system, Mobile SmartScope, which consists of a small optical unit integrated with a smartphone. The performance of the SmartScope was favorably compared with that of conventional light microscopy in detecting and quantifying red blood cells. We also evaluated the fluorescence detection limit of the SmartScope incorporated with a blue light-emitting diode and appropriate optical filters by using fluorescently labeled microbeads for intensity calibration.

무채혈 혈당 측정기의 혈당 측정 원리: 혈당 검출방법 중심으로 (Blood Glucose Measurement Principles of Non-invasive Blood Glucose Meter: Focused on the Detection Methods of Blood Glucose)

  • 안원식;김진태
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권3호
    • /
    • pp.114-127
    • /
    • 2012
  • Recent technical advancement allows noninvasive measurement of blood glucose. In this literature, we reviewed various noninvasive techniques for measuring glucose concentration. Optical or electrical methods have been investigated. Optical techniques include near-infrared spectroscopy, Raman spectroscopy, optical coherence technique, polarization, fluorescence, occlusion spectroscopy, and photoacoustic spectroscopy. Electrical methods include reverse iontophoresis, impedance spectroscopy, and electromagnetic sensing. Ultrasound, detection from breath, or fluid harvesting technique can be used to measure blood glucose level. Combination of various methods is also promising. Although there are many interesting and promising technologies and devices, there need further researches until a commercially available non-invasive glucometer is popular.

용액내 단일 분자 검출을 위한 컴퓨터 인터페이싱 광자계수기의 제작 (Fabrication of computer-interfaced photon counter for single molecule detection in solution)

  • 고동섭
    • 한국광학회지
    • /
    • 제8권1호
    • /
    • pp.42-46
    • /
    • 1997
  • 단일 색소 분자가 공초점 현미경의 검출 영역을 통과하면서 방출하는 형광폭발신호를 수집하기 위해서 컴퓨터 인터페이싱 광자계수기를 제작하였다. 사용한 계수기 소자들에 의해서 결정되는 최대 계수 속도는 약 80 MHz이며, 486급 PC 컴퓨터와 BASIC으로 작성한 프로그램을 사용하였을 때 최소 bin-width는 약 25.mu.s이었다. 이 계수기를 사용하여 에틸렌글리콜 용액내에 있는 JA22 단일 분자의 형광폭발신호를 수집하였으며 그 특성을 간략하게 기술하였다. 이때 색소 분자의 농도는 약 1 * $10^{-11}$ mol/L이었다.

  • PDF

광역학적 암진단을 위한 광원장치의 설계 및 평가 (Design and evaluation of light source for photodynamic diagnosis of cancer)

  • 임현수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.73-76
    • /
    • 2007
  • Photodynamic diagnosis(PDD) is a method to diagnose the possibility of cancer, both by the principle that if a photosensitizer is injected into an organic tissue, it is accumulated in the tissue of a malignant tumor selectively after a specific period, and by a comparison of the intensity of the fluorescence of normal tissue with abnormal tissue after investigating the excitation light of a tissue with accumulated photosensitizer. Since the selection of the wavelength band of excitation light has an interrelation with fluorescence generation according to the selection of a photosencitizer, it plays an important role in POD. This study aims at designing and evaluating light source devices that can stably generate light with various kinds of wavelengths In order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source device was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-400. The transmission part of the light source was, developed to enhance the efficiency of light transmission. To evaluate this light source device, the characteristics of the light output and wavelength band were verified. To validate the capability of this device as PDD the detection of auto-fluorescence using mouse was performed.

  • PDF

Photoluminescent Graphene Oxide Microarray for Multiplex Heavy Metal Ion Analysis

  • Liu, Fei;Ha, Hyun Dong;Han, Dong Ju;Park, Min Su;Seo, Tae Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.281.2-281.2
    • /
    • 2013
  • Since heavy metal ions included in water or food resources have critical effects on human health, highly sensitive, rapid and selective analysis for heavy metal detection has been extensively explored by means of electrochemical, optical and colorimetric methods. For example, quantum dots (QDs), such as semiconductor QDs, have received enormous attention due to extraordinary optical properties including high fluorescence intensity and its narrow emission peaks, and have been utilized for heavy metal ion detection. However, the semiconductor QDs have a drawback of serious toxicity derived from cadmium, lead and other lethal elements, thereby limiting its application in the environmental screening system. On the other hand, Graphene oxide (GO) has proven its superlative properties of biocompatibility, unique photoluminescence (PL), good quenching efficiency and facile surface modification. Recently, the size of GO was controlled to a few nanometers, enhancing its optical properties to be applied for biological or chemical sensors. Interestingly, the presence of various oxygenous functional groups of GO contributes to opening the band gap of graphene, resulting in a unique PL emission pattern, and the control of the sp2 domain in the sp3 matrix of GO can tune the PL intensity as well as the PL emission wavelength. Herein, we reported a photoluminescent GO array on which heavy metal ion-specific DNA aptamers were immobilized, and sensitive and multiplex heavy metal ion detection was performed utilizing fluorescence resonance energy transfer (FRET) between the photoluminescent monolayered GO and the captured metal ion.

  • PDF

색소 농도에 따른 형광 광자의 계수율 : 광자 검출기의 dead time 효과 (Fluorescence photon counting rate as a function of dye concentration: Effect of dead time of photon detector)

  • 고동섭
    • 한국광학회지
    • /
    • 제8권4호
    • /
    • pp.353-355
    • /
    • 1997
  • 공초점 형광 현미경과 단일 광자 계수기로 구성되어 있는 단일 분자 검출장치를 사용하여, 색소 농도에 따른 광자 계수율의 변화를 관측하였다. 농도가 증가함에 따라 계수율이 포화하는 경향을 보였으며, 광검출기의 죽은 시간을 고려하여 측정 결과를 설명하였다. 계수율과 검출 부피, 광검출기의 양자효율, 입사 광량 사이의 관계를 나타내는 관계식을 제시하였다. 또한 신호대 잡음비에 대해서도 간략하게 논하였다.

  • PDF

초기 우식 병소에서 광원에 따른 형광효과 비교 (A COMPARISON OF FLUORESCENCE EFFECT OF VARIOUS LIGHT SOURCES IN EARLY ENAMEL CARIES)

  • 전정훈;이난영;이창섭;이상호
    • 대한소아치과학회지
    • /
    • 제32권4호
    • /
    • pp.611-619
    • /
    • 2005
  • 본 연구의 목적은 초기 우식 병소에서 광원에 따른 형광효과를 비교하는 것으로 정량 분석형 laser/light 형광법(Quantitative laser/light-induced fluorescence, QLF)을 이용하여 아르곤 레이저광, 할로겐광, 발광다이오드광(LED), 플라즈마광의 형광효과를 비교하였다. 발거된 60개의 치아를 선정한 후, 인공우식용액에 노출되지 않을 부분에 nail varnish를 도포하였고 치아는 24, 48, 72시간 동안 인공우식용액에 보관되었다. 건조 후 QLF영상으로 초기 우식 부위의 광밀도 차이에 의한 탈회정도가 기록되었다. 또한 조영제를 이용하여 동일한 방법으로 실험하였고 다음과 같은 결과를 얻었다 염료를 이용하여 같은 방법으로 실험하여 또 다른 결과를 얻었다. 1. 각 군의 평균 광밀도를 볼 때, 플라즈마광이 세 군 모두에서 다른 광원들 보다 높았다(p<0.05). 2. 세 군 사이에서 평균 광밀도를 비교해 볼 때, 플라즈마광과 할로겐광이 차이를 보였다(p<0.05). 3. 조영제를 사용하였을 경우 평균 광밀도를 비교해 볼 때, 플라즈마광이 세 군 모두에서 다른 광원들보다 높았고 (p<0.05), 발광다이오드광(LED)와 아르곤 레이저광을 제외한 모든 광원이 차이를 보였다(p<0.05). 4. 조영제를 사용하지 않은 경우와 사용한 경우 평균 광밀도를 비교해 볼 때, 사용한 경우에 모든 광원의 평균 광밀도 차이가 컸다.

  • PDF

Teaching a Known Molecule New Tricks: Optical Cyanide Recognition by 2-[(9-Ethyl-9H-carbazol-3-yl)methylene]propanedinitrile in Aqueous Solution

  • Tang, Lijun;Zhao, Guoyou;Wang, Nannan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3696-3700
    • /
    • 2012
  • The colorimetric and fluorescent cyanide recognition properties of 2-[(9-ethyl-9H-carbazol-3-yl)methylene]-propanedinitrile (1) in $CH_3CN-H_2O$ (2/1, v/v, HEPES 10 mM, pH = 7.0) solution were evaluated. The optical recognition process of probe 1 exhibited high sensitivity and selectivity to cyanide ion with the detection limit of $2.04{\times}10^{-6}$ M and barely interfered by other coexisting anions. The sensing mechanism of probe 1 is speculated to undergo a nucleophilic addition of cyanide to dicyanovinyl group present in compound 1. The colorimetric and fluorescent dual-modal response to cyanide makes probe 1 has a potential utility in cyanide detection.

수질내 초미립자와 미생물의 동시 검출을 위한 광학센서기술 (Optical sensing techniques for simultaneous detection of nanoparticles and microorganisms in water)

  • 손옥재;형기우;김병섭;이종일
    • 센서학회지
    • /
    • 제17권3호
    • /
    • pp.157-161
    • /
    • 2008
  • An optical sensor was developed to detect nanoparticles, turbid materials and microorganisms in water simultaneously. Three different light sources like UV-LED, NIR-LED and laser diode have been employed to develop the optical sensor based on the scattering light and fluorescence light. The sensor system has high selectivity and sensitivity, that it can be used to monitor the quality of drinking water.

Automated 3D scoring of fluorescence in situ hybridization (FISH) using a confocal whole slide imaging scanner

  • Ziv Frankenstein;Naohiro Uraoka;Umut Aypar;Ruth Aryeequaye;Mamta Rao;Meera Hameed;Yanming Zhang;Yukako Yagi
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.4.1-4.12
    • /
    • 2021
  • Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for 3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging, significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be integrated with SHIMARIS PAFQ.