• Title/Summary/Keyword: Fluorescence optical detection

Search Result 82, Processing Time 0.024 seconds

In Situ Fluorescence Optical Detection Using a Digital Micromirror Device (DMD) for 3D Cell-based Assays

  • Choi, Jong-Ryul;Kim, Kyujung;Kim, Donghyun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.42-46
    • /
    • 2012
  • We have developed a fluorescence optical detection system using a digital micromirror device (DMD) for monitoring 3D cell culture matrices in situ. Full 3D imaging with fast scanning speed was implemented by the combined action of a DMD and a motorized stage. Imaging results with fluorescent microbeads measure the minimum axial resolution of the system as $6.3{\mu}m$, while full 1-mm scanning through 3D alginate-based matrix was demonstrated. For cell imaging, improved images were obtained by removing background fluorescence although the scanning distance was reduced because of low intracellular fluorescence efficiency. The system is expected to be useful to study various dynamics and behaviors of 3-dimensionally cultured cells in microfluidic systems.

Miniaturized Fluorometer Based on Total Internal Reflector and Condensing Mirror

  • Jang, Dae-Ho;Yoo, Jae-Chern
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.81-85
    • /
    • 2013
  • A miniaturized fluorescence detection system based on total internal reflection (TIR) configuration, which is applicable to detecting the presence of biological materials labeled with fluorescence dye in micro total analysis systems (${\mu}TAS$), is proposed. In conventional fluorescence testing and analysis devices, interference between the excitation light beam and the emitted light from dyes is unavoidable. This paper presents a fluorescence detection system based on TIR configuration that allows the excitation light beam and the emitted light to be spatially perpendicular to each other so as to minimize the interference where fluorescence emission is detected at the orthogonal angle to the excitation beam. We achieved the limit of detection of about 5 nmol/L with a high linearity of 0.994 over a wide range of 6-FAM mol concentration, being comparable to that in earlier studies.

Proposal and design of reflecting optical system to improve detection intensity in fluorescence confocal scanning microscopy (형광 공초점 주사 현미경의 측정 강도 향상을 위한 반사 광학계의 제안 및 설계)

  • 강동균;서정우;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.187-190
    • /
    • 2002
  • Confocal microscopy is very popular technology in bio-medical inspection due to its ability to reject background signals and to measure very thin slide of thick specimens, which is called optical sectioning. But intensity of detected signal in fluorescence type confocal microscopy is so small that only 0.2% of emitted fluorescence light can be detected in the best case. In this paper, we proposed the reflecting optical system to improve the detection intensity and designed the optical system by optimal design method. At the end of the paper, we analyzed the characteristics of the proposed reflecting optical system.

  • PDF

OPTICAL SENSITIVITY OF LASER FLUORESCENCE FOR INCIPIENT CARIES DETECTION (초기우식병소에 대한 레이저 fluorescence의 광학적 탐지감도)

  • Kim, Hyo-Suck;Kim, Wang-Kwen;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • The aim of this study was to evaluate the optical density of laser fluorescence for detection of incipient caries. Prepared and polished bovine enamel specimens were demineralized in a STPP solution for varying periods of time between 3 hrs. and 60 hrs. with an area of sound enamel retained on each specimen. The randomized specimens were analyzed for optical density of enamel demineralization using laser fluorescence. The specimens were sectioned and examined lesion depth by polarizing light microscope. Results were analyzed statistically with SAS program. The results from this study can be summarized as follows: 1. Optical density measured by laser fluorescence and lesion depth measured by polarizing light microscope was increased as demineralization time was increased(p<0.001). 2. Between optical density measured by laser fluorescence and lesion depth measured by polarizing light microscope was correlated highly(${\gamma}{\geq}0.74956$, p<0.001). 3. Regressive equation was obtained in this study as follows. Y=[X-0.260851]/0.000271(R-square:0.5618, p<0.001) (X:DENSITY, Y:DEPTH) In summary, optical density measured by laser fluorescence would be within the range of possibility to quantitatively presume demineralization amount of incipient caries lesion

  • PDF

Fabrication of a Single Molecule Detection System and Its Application: Connection between Ensemble and Single Molecule Measurements

  • Park, Mira;Lee, Heung Soon;Kim, DongHo;Song, Nam Woong
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.47-53
    • /
    • 2004
  • A laser scanning fluorescence microscope system has been fabricated for single molecule detection (SMD). Problems associated with the system set-up have been discussed along with proper suggestions. Based on the SMD results obtained by using the apparatus, a statistical method has been suggested to determine the minimum number of required molecules to form a group of uniform average in a selected error range.

  • PDF

Development of Photo-sensor for Integrated Lab-On-a-Chip (집적화된 Lab-On-a Chip을 위한 광센서의 제작 및 특성 평가)

  • 김주환;신경식;김용국;김태송;김상식;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.404-409
    • /
    • 2004
  • We fabricated photo-sensor for fluorescence detection in LOC. LOC is high throughput screening system. Our LOC screens biochemical reaction of protein using the immunoassay, and converts biochemical reaction into electrical signal using LIF(Laser Induced Fluorescence) detection method. Protein is labeled with rhodamine intercalating dye and finger PIN photodiode is used as photo-sensor We measured fluorescence emission of rhodamine dye and analyzed tendency of fluorescence detection, according to photo-sensor size, light intensity, and rhodamine concentration. Detection current was almost linearly proportional to two parameters, intensity and concentration, and was inversely proportional to photo-sensor size. Integrated LOC consists of optical-filter deposited photo-sensor and PDMS microchannel detected 50 (pg/${mu}ell$) rhodamine. For integrated LOC including light source, we used green LED as the light source and measured emitted fluorescence.

Single-molecule Detection of Fluorescence Resonance Energy Transfer Using Confocal Microscopy

  • Kim, Sung-Hyun;Choi, Don-Seong;Kim, Do-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.107-111
    • /
    • 2008
  • We demonstrated single-molecule fluorescence resonance energy transfer (FRET) from single donor-acceptor dye pair attached to a DNA with a setup based on a confocal microscope. Singlestrand DNAs were immobilized on a glass surface with suitable inter-dye distance. Energy transfer efficiency between the donor and the acceptor dyes attached to the DNA was measured with different lengths of DNA. Photobleaching of single dye molecule was observed and used as a sign of single-molecule detection. We could achieve high enough signal-to-noise ratio to detect the fluorescence from a single-molecule, which allows real-time observation of the distance change between single dye pairs in nanometer scale.

Miniature Biochip Fluorescence Detection System with Spatial Separation of Fluorescence from Excitation Light (형광과 여기광을 공간적으로 분리하는 바이오칩용 소형 형광측정시스템)

  • Kim Ho-seong;Choi Jea-ho;Park Ju-han;Lee Kook-nyung;Kim Yong-Kweon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.8
    • /
    • pp.378-383
    • /
    • 2005
  • We report the development of miniature fluorescence detection systems that employ miniature prism, mirrors and low coat CCD camera to detect the fluorescence emitted from 40 fluorescently-labeled protein patterns without scanner. This kind of miniature fluorescence detection system can be used in point of care. We introduce two systems, one uses prism+mirror block and the other uses prism and two mirrors. A large NA microscope eyepiece and low cost CCD camera are used. We fabricated protein chip containing multi-pattern BSA labeled with Cy5, using MEMS technology and modified the surface chemically to clean and to immobilize proteins. The measurements show that the combination of prism and mirrors can homogenize elliptical excitation light over the sample with higher optical efficiency, and increase the separation between excitation and fluorescence light at the CCD to give higher signal intensity and higher signal to noise ratio. The measurements also show that protein concentrations ranging from 10 ng/ml to 1000 ng/ml can be assayed with very small error. We believe that the proposed fluorescence detection system can be refined to build a commercially valuable hand-held or miniature detection device.

Miniature Fluorescence Detection System for Protein Chips by Prism (프리즘을 이용한 소형 단백질칩 분석 형광측정 시스템 개발)

  • Choi, Jae-Ho;Kim, Ho-Seong;Lee, Kook-Nyung;Kim, Eun-Mi;Kim, Yong-Kweon;Kim, Byung-Gee
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2040-2042
    • /
    • 2004
  • This paper presents a miniature optical system for the fluorescence detection of the patterned protein chip. The patterned protein chip was fabricated using MEMS process. The fluorescence from the patterned protein chip was measured while varying the concentration of the BSA. The fluorescence light is separated spatially from the excitation beam using mini-size prism to increase SNR (Signal-to-Noise Ratio). The combination of prism and mirrors can convert the excitation light from the laser diode to uniform illumination on the specimen. We believe that the proposed system for fluorescence detection can be applied to rea1ization of point-of-care.

  • PDF

Recent Progress in Multiplexed Detection of Biomarkers Based on Quantum Dots (양자점 기반 다중 바이오마커 검출법의 연구동향)

  • Kim, Yerin;Choi, Yu Rim;Kim, Bong-Geun;Na, Hyon Bin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.451-458
    • /
    • 2022
  • Semiconductor quantum dots (QDs) are optical probes with excellent fluorescence properties. Therefore, they have been applied to various bio-medical imaging techniques and biosensors. Due to the unique optical characteristics of wide absorption and narrow fluorescence energy bands, multiple types of signals can be generated by the combination of fluorescence wavelengths from different QDs, which enables the simultaneous detection of more than two biomarkers. In this review, the advantages and applications of QDs and QD nanobeads (QBs) in multiple biomarker assays were described, and new developments or improvements in multiplexed biomarker detection techniques were summarized. In particular, recent reports were summarized, focusing on the design strategies in immunoassay construction and signal transducing materials for fluorescence-linked immunosorbent assays using QDs and immunochromatographic assays using QBs. New detection platforms will be developed for early diagnosis of diseases and other fields if multiplexed detection technologies of excellent accuracy and sensitivity are combined with artificial intelligence algorithms.