• 제목/요약/키워드: Fluorescence in situ hybridization analysis

검색결과 105건 처리시간 0.044초

Single-molecule fluorescence in situ hybridization: Quantitative imaging of single RNA molecules

  • Kwon, Sunjong
    • BMB Reports
    • /
    • 제46권2호
    • /
    • pp.65-72
    • /
    • 2013
  • In situ detection of RNAs is becoming increasingly important for analysis of gene expression within and between intact cells in tissues. International genomics efforts are now cataloging patterns of RNA transcription that play roles in cell function, differentiation, and disease formation, and they are demon-strating the importance of coding and noncoding RNA transcripts in these processes. However, these techniques typically provide ensemble averages of transcription across many cells. In situ hybridization-based analysis methods complement these studies by providing information about how expression levels change between cells within normal and diseased tissues, and they provide information about the localization of transcripts within cells, which is important in understanding mechanisms of gene regulation. Multi-color, single-molecule fluorescence in situ hybridization (smFISH) is particularly useful since it enables analysis of several different transcripts simultaneously. Combining smFISH with immunofluorescent protein detection provides additional information about the association between transcription level, cellular localization, and protein expression in individual cells.

1p36 deletion syndrome confirmed by fluorescence in situ hybridization and array-comparative genomic hybridization analysis

  • Kang, Dong Soo;Shin, Eunsim;Yu, Jeesuk
    • Clinical and Experimental Pediatrics
    • /
    • 제59권sup1호
    • /
    • pp.14-18
    • /
    • 2016
  • Pediatric epilepsy can be caused by various conditions, including specific syndromes. 1p36 deletion syndrome is reported in 1 in 5,000-10,000 newborns, and its characteristic clinical features include developmental delay, mental retardation, hypotonia, congenital heart defects, seizure, and facial dysmorphism. However, detection of the terminal deletion in chromosome 1p by conventional G-banded karyotyping is difficult. Here we present a case of epilepsy with profound developmental delay and characteristic phenotypes. A 7-year-and 6-month-old boy experienced afebrile generalized seizure at the age of 5 years and 3 months. He had recurrent febrile seizures since 12 months of age and showed severe global developmental delay, remarkable hypotonia, short stature, and dysmorphic features such as microcephaly; small, low-set ears; dark, straight eyebrows; deep-set eyes; flat nasal bridge; midface hypoplasia; and a small, pointed chin. Previous diagnostic work-up, including conventional chromosomal analysis, revealed no definite causes. However, array-comparative genomic hybridization analysis revealed 1p36 deletion syndrome with a 9.15-Mb copy loss of the 1p36.33-1p36.22 region, and fluorescence in situ hybridization analysis (FISH) confirmed this diagnosis. This case highlights the need to consider detailed chromosomal study for patients with delayed development and epilepsy. Furthermore, 1p36 deletion syndrome should be considered for patients presenting seizure and moderate-to-severe developmental delay, particularly if the patient exhibits dysmorphic features, short stature, and hypotonia.

Age Prediction in the Chickens Using Telomere Quantity by Quantitative Fluorescence In situ Hybridization Technique

  • Kim, Y.J.;Subramani, V.K.;Sohn, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권5호
    • /
    • pp.603-609
    • /
    • 2011
  • Telomeres are special structures at the ends of eukaryotic chromosomes. Vertebrate telomeres consist of tandem repeats of conserved TTAGGG sequence and associated proteins. Birds are interesting models for molecular studies on aging and cellular senescence because of their slow aging rates and longer life spans for their body size. In this longitudinal study, we explored the possibility of using telomeres as an age-marker to predict age in Single Comb White Leghorn layer chickens. We quantified the relative amount of telomeric DNA in isolated peripheral blood lymphocytes by the Quantitative Fluorescence in situ Hybridization technique on interphase nuclei (IQ FISH) using telomere-specific DNA probes. We found that the amount of telomeric DNA (ATD) reduced significantly with an increase in chronological age of the chicken. Especially, the telomere shortening rates are greatly increased in growing individuals compared to laying and old-aged individuals. Therefore, using the ATD values obtained by IQ FISH we established the possibility of age prediction in chickens based on the telomere theory of aging. By regression analysis of the ATD values at each age interval, we formulated an equation to predict the age of chickens. In conclusion, the telomeric DNA values by IQ FISH analyses can be used as an effective age-marker in predicting the chronological age of chickens. The study has implications in the breeding and population genetics of poultry, especially the reproductive potential.

Multicolor FISH와 Feulgen 염색법을 이용한 Angelica속 식물의 세포유전학적 분석 (Cytogenetic Analyses of Angelica Plants Using Feulgen Staining and Multicolor Fluorescence in Situ Hybridization)

  • 구달회;김수영;방경환;성낙술;방재욱
    • Journal of Plant Biotechnology
    • /
    • 제30권2호
    • /
    • pp.123-127
    • /
    • 2003
  • Karyotype analysis and chromosomal localization of 5S and 45S rDNAs using multi-color fluorescence in situ hybridization (McFISH) technique were carried out in two Angelica species. The numbers of diploid chromosomes were the same in two same in two species as 2n=22, however the lengths of chromosomes were varied from 4.25 to 6.50 ${\mu}{\textrm}{m}$ in A gigas and 4.95 to 8.50 ${\mu}{\textrm}{m}$ in A acutiloba. The chromosomes of A. gigas were composed of five metacentric and six submetacentric pairs, while those of A. acutiloba were six metacentic, one submetacentric and four subtelocentric paris. In FISH experiments, the numbers and size of 45S rDNA signals were varied between two species, however dach signal of the 5S rDNA was observed in two species.

Automated 3D scoring of fluorescence in situ hybridization (FISH) using a confocal whole slide imaging scanner

  • Ziv Frankenstein;Naohiro Uraoka;Umut Aypar;Ruth Aryeequaye;Mamta Rao;Meera Hameed;Yanming Zhang;Yukako Yagi
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.4.1-4.12
    • /
    • 2021
  • Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for 3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging, significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be integrated with SHIMARIS PAFQ.

Community structure analysis of nitrifying biofilms by 16S rRNA targeted probe and fluorescence in situ hybridization (FISH)

  • 한동우;김동진
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.282-285
    • /
    • 2001
  • 질산화 생물여과 시스템 내 생물막 안에 존재하는 ammonia oxidizers 및 nitrite oxidizers의 군집 구조 및 공간적 분포를 조사하였다. FISH 분석 결과 생물막 내 숫적으로 우점종을 이루는 미생물은 ammonia oxidizer인 Nitrosomonas spp.로 나타났으며 nitrite oxidizer 인 Nilrospira spp.에 비해 3 ${\sim}$ 5 정도 더 많이 존재하였다. 이는 실협 기간동안 완전한 질산화를 보였지만 반응기가 2 년 이상 nitrite 축적을 위해 높은 free ammonia 농도 빛 낮은 용존 산소 상태에서 운선되어 nitrite oxidizers에 저해를 주었기 때문인 것으로 사료된다. FISH와 결합된 CLSM 관찰 결과 생물막 전체에 걸쳐 ammonia oxidizer가 분포하는 반면 안쪽으로 갈수록 nitrite oxidizers가 분포함을 보였다. 이는 폐수의 ammonium 을 생물막 내 ammon ia oxidizer가 먼저 nitrite로 산화시키고 이를 nitrite oxidizers가 곧바로 nitrate로 산화시키기 때문이다.

  • PDF

Design, Optimization and Verification of 16S rRNA Oligonucleotide Probes of Fluorescence in-situ Hybridization for Targeting Clostridium spp. and Clostridium kluyveri

  • Hu, Lintao;Huang, Jun;Li, Hui;Jin, Yao;Wu, Chongde;Zhou, Rongqing
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1823-1833
    • /
    • 2018
  • Fluorescence in-situ hybridization (FISH) is a common and popular method used to investigate microbial communities in natural and engineered environments. In this study, two specific 16S rRNA-targeted oligonucleotide probes, CLZ and KCLZ, were designed and verified to quantify the genus Clostridium and the species Clostridium kluyveri. The optimal concentration of hybridization buffer solution for both probes was 30% (w/v). The specificity of the designed probes was high due to the use of pellets from pure reference strains. Feasibility was tested using samples of Chinese liquor from the famed Luzhou manufacturing cellar. The effectiveness of detecting target cells appears to vary widely in different environments. In pit mud, the detection effectiveness of the target cell by probes CLZ and KCLZ was 49.11% and 32.14%, respectively. Quantitative analysis by FISH technique of microbes in pit mud and fermented grains showed consistency with the results detected by qPCR and PCR-DGGE techniques, which showed that the probes CLZ and KCLZ were suitable to analyze the biomass of Clostridium spp. and C. kluyveri during liquor fermentation. Therefore, this study provides a method for quantitative analysis of Clostridium spp. and C. kluyveri and monitoring their community dynamics in microecosystems.

The role of cytogenetic tools in orchid breeding

  • Samantha Sevilleno Sevilleno;Raisa Aone Cabahug-Braza;Hye Ryun An;Ki‑Byung Lim;YoonJung Hwang
    • 농업과학연구
    • /
    • 제50권2호
    • /
    • pp.235-248
    • /
    • 2023
  • Orchidaceae species account for one-tenth of all angiosperms including more than 30,000 species having significant ecological, evolutionary, and economic importance. Despite Orchidaceae being one of the largest families among flowering plants, crucial cytogenetic information for studying species diversification, inferring phylogenetic relationships, and designing efficient breeding strategies is lacking, except for 10% or less of orchid species cases involving mostly chromosome number or karyotype analysis. Also, only approximately 1.5% of the identified orchid species from less than a hundred genera have genome size data that provide crucial information for breeders and molecular geneticists. Various molecular cytogenetic techniques, such as fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), have been developed for determining ploidy levels, analyzing karyotypes, and evaluating hybridity, in several ornamental crops including orchids. The estimation of genome size and the determination of nuclear DNA content using flow cytometry have also been employed in some Orchidaceae subfamilies. These different techniques have played an important role in supplementing beneficial knowledge for effective plant breeding programs and other related plant research. This review focused on orchid breeding summarizes the status of current cytogenetic tools in terms of background, advancements, different techniques, significant findings, and research challenges. Principal roles and applications of cytogenetics in orchid breeding as well as different ploidy level determination methods crucial for breeding are also discussed.

Fluorescence in Situ Hybridization 시행을 위한 인간정자 탈응축법의 적정화 (The Optimization of Human Sperm Decondensation Procedure for Fluorescence in Situ Hybridization)

  • 방명걸
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제24권3호
    • /
    • pp.369-375
    • /
    • 1997
  • Studies were conducted to determine the efficiency of decondensation protocols. Sperm obtained from seven normal donors was immediately washed after liquefaction and then decondensed using the method of West et al. (1989) and my original protocol. My optimized protocol entailed mixing 1 ml aliquots of semen with 4 ml phosphate buffered saline (PBS). Following centrifugation, pellets were resuspended in 1 ml PBS containing 6 mM EDTA. After centrifugation, pellets were resuspended in 1 ml PBS containing 2 mM dithiothreitol at $37^{\circ}C$ for 45 min. Following mixing with 2 ml PBS and centrifugation, pellets were resuspended by vortexing. While vortexing, 5 ml of fixative were gently added. Slide preparation was accomplished using the smear method and it was stored at $4^{\circ}C$. When comparing these protocols, the degree of sperm decondensation and head swelling was monitored by measuring nuclear length, area, perimeter, and degree of roundness using FISH analysis software. Apparent copy number for chromosome 1 and, separately, for the sex chromosomes was determined by FISH using satellite DNA probes for loci DIZ1, DXZ1 and DYZ3. Sperm treated by my decondensation protocol showed significant increases (p<0.05) in length, area, perimeter, and degree of roundness. There was a significant decrease (p<0.05) in the frequency of nuclei displaying no signal but no change in the frequency of nuclei with two signals in samples decondensed by my protocol. My data suggested that decondensation using my original protocol may lower the frequency of cells with spurious "nullisomy" due to hybridization failure without inducing spurious "disomy" resulting from increased distances between split signals.

  • PDF