• Title/Summary/Keyword: Fluorescence dye

Search Result 214, Processing Time 0.028 seconds

Fluorescence Quenching Causes Systematic Dye Bias in Microarray Experiments Using Cyanine Dye

  • Jeon, Ho-Sang;Choi, Sang-Dun
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.113-117
    • /
    • 2007
  • The development of microarray technology has facilitated the understanding of gene expression profiles. Despite its convenience, the cause of dye-bias that confounds data interpretation in dual-color DNA microarray experiments is not well known. In order to economize time and money, it is necessary to identify the cause of dye bias, since designing dye-swaps to reduce the dye-specific bias tends to be very expensive. Hence, we sought to determine the reliable cause of systematic dye bias after treating murine macrophage RAW 264.7 cells with 2-keto-3-deoxyoctonate (KDO), interferon-beta $(IFN-{\beta})$, and 8-bromoadenosine (8-BR). To find the cause of systematic dye bias from the point of view of fluorescence quenching, we examined the correlation between systematic dye bias and the proportion of each nucleotide in mRNA and oligonucleotide probe sequence. Cy3-dye bias was highly correlated with the proportion of adenines. Our results support the fact that systematic dye bias is affected by fluorescence quenching of each feature. In addition, we also found that the strength of fluorescence quenching is based on not only dye-dye interactions but also dye-nucleotide interactions as well.

DETECTION OF PROXIMAL CARIES USING LASER FLUORESCENCE (레이저 형광법을 이용한 인접면 우식증 탐지효과)

  • Mo, Kyung-Hee;Yoon, Jung-Hoon;Kim, Su-Gwan;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.323-330
    • /
    • 2004
  • The purpose of this study was to evaluate the diagnostic validity of early proximal caries lesions using laser fluorescence and whether the detection could be enhanced using a fluorescent dye. Direct visual examination and bitewing radiograph were used for comparison. The subjects of this study were 30 children of $3{\sim}9$ years old. Laser fluorescence and dye-enhanced laser fluorescence(mixed wavelength of 488 and 514 nm) were used and viewed through glasses(excluding wavelength<520 nm). For dye-enhanced laser fluorescence a 0.075% sodium fluorescein dye was applied before examination. Proximal caries lesion of each subject was assessed using visual examination, bitewing radiograph, laser fluorescence, and dye-enhanced laser fluorescence. The results in the three detection methods were compared to the assessment of bitewing radiograph. The results from the present study can be summarized as follows: 1. There was highly correlation(r=0.725-0.911) between the bitewing radiograph and all three detection methods(p<0.05) 2. The reproducibility(kappa value) of the visual examination, laser fluorescence and dye-enhanced laser fluorescence comparing with bitewing radiograph of proximal caries was 0.451, 0.683, 0.772, respectively. There was highest correlation between dye-enhanced laser fluorescence and bitewing radiograph for detection of proximal caries. The results from this study indicated that the dye-enhanced laser fluorescence considered to be accurate and reliable method in detecting proximal caries.

  • PDF

Dyeing of High Strength and High Molecular Weight Polyethylene Fiber Using Super Hydrophobic Fluorescence Dyes (초소수성 형광염료에 의한 고강도/고분자량폴리에틸렌섬유의 염색)

  • Kim, Taekyeong;Park, Jihoon;Lee, Junheon;Kim, Taegun
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.223-230
    • /
    • 2017
  • Three super hydrophobic fluorescence dyes were selected to dye high molecular weight polyethylene fiber and their molar absorptivity, emission spectrum, and quantum yield were measured. From the results of color strength on the fiber, all the three dyes exhibited linear increase according to the dye concentration and Fluoro3 dye showed the highest color strength among them. Emission strength of the fluorescence dyes on the fiber was investigated according to the dye concentrations. The emission was increased with the increase of the dye concentration at relatively low dye concentration and then after showing the maximum emission strength the emission was decreased at higher dye concentrations. The highest emission was obtained in Fluoro2 dye. Color fastness to washing and rubbing was generally good enough, however, especially to light, only Fluoro3 dye exhibited rating 3 acceptable practically and Fluoro1 and 2 was ratings 1 which is unacceptable level.

Single-molecule Detection of Fluorescence Resonance Energy Transfer Using Confocal Microscopy

  • Kim, Sung-Hyun;Choi, Don-Seong;Kim, Do-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.107-111
    • /
    • 2008
  • We demonstrated single-molecule fluorescence resonance energy transfer (FRET) from single donor-acceptor dye pair attached to a DNA with a setup based on a confocal microscope. Singlestrand DNAs were immobilized on a glass surface with suitable inter-dye distance. Energy transfer efficiency between the donor and the acceptor dyes attached to the DNA was measured with different lengths of DNA. Photobleaching of single dye molecule was observed and used as a sign of single-molecule detection. We could achieve high enough signal-to-noise ratio to detect the fluorescence from a single-molecule, which allows real-time observation of the distance change between single dye pairs in nanometer scale.

Enhancement of Photovoltaic Performance of Fluorescence Materials added TiO2 electrode in Dye-sensitized Solar Cells (형광물질을 이용한 염료감응태양전지의 효율향상)

  • Cheon, JongHun;Lee, JeongGwan;Jung, MiRan;Kim, JaeHong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.88.2-88.2
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) have attracted considerable attention on account of their high solar energy-to-conversion efficiencies and low cost processes compared to conventional p-n junction solar cells. The mechanism of DSSC is based on the injection of electrons from the photo excited dyes into the conduction band of the semiconductor electrode. The oxidized dye is reduced by the hole injection into either the hole conductor or the electrolyte. Thus, the light harvesting effect of dye plays an important role in capturing the photons and generating the electron/hole pair, as well as transferring them to the interface of the semiconductor and the electrolyte, respectively. We used the organic fluorescence materials which can absorb short wavelength light and emit longer wavelength region where dye sensitize effectively. In this work, the DSSCs were fabricated with fluorescence materials added $TiO_2$ photo-electrode which were sensitized with metal-free organic dyes. The photovoltaic performances of fluorescence aided DSSCs were compared, and the recombination dark current curves and the incident photon-to-current (IPCE) efficiencies were measured in order to characterize the effects of the additional light harvesting effect in DSSC. Electro-optical measurements were also used to optimize the fluorescence material contents on TiO2 photo-electrode surface for higher conversion efficiency (${\eta}$), fill factor (FF), open-circuit voltage (VOC) and short-circuit current (ISC). The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

DETECTION OF EARLY PROXIMAL CARIES WITH LASER FLUORESCENCE (레이저 형광법을 이용한 인접면 우식증의 진단)

  • Seol, Jae-Heon;Oh, You-Hyang;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.236-246
    • /
    • 2004
  • Artificial carious lesions in various depths were observed with visual examination using light transillumination, bite-wing radiography, laser fluorescence, and dye-enhanced laser fluorescence to determine the reproducibility, correlation of each diagnostic method, diagnostic sensitivity and diagnostic specificity. And optical densities according to demineralized times were measured whether laser fluorescence could be used as a quantitative diagnostic method. The following results were obtained whether laser fluorescence could be used for diagnosis of initial proximal caries. 1. Tau-c values of visual examination was 0.08 which showed lowest reproducibility and those of bite-wing radiography, laser fluorescence, dye-enhanced laser fluorescence were 0.60, 0.48, and 0.64, respectively which showed relatively high reproducibility. 2. The correlation between demineralization time and each examination was the highest in dye-enhanced laser fluorescence$({\gamma}=0.51)$ followed by laser fluorescence$({\gamma}=0.43)$, bite-wing radiograph$({\gamma}=0.35)$, and visual examination$({\gamma}=0.33)$. Dye-enhanced laser fluorescence and laser fluorescence showed significant correlation with demineralization time. 3. The sensitivity of laser fluorescence and dye-enhanced laser fluorescence for diagnosing approximal caries based on bite-wing radiography were 67%, 100% and those of specificity were 57%, 11% which showed diagnostic specificity was relatively lower than sensitivity. 4. The difference in optical density(DFR) between sound teeth and carious lesions according to lesion depth was high with dye-enhanced laser fluorescence compared with laser fluorescence. DFR measured with laser fluorescence according to changes in lesion depth was statistically significant but was not statistically significant with dye-enhanced laser fluorescence. Based on these results, laser fluorescence and dye-enhanced laser fluorescence have comparable diagnostic power as bite-wing radiography in early diagnosis of proximal caries.

  • PDF

Simple Analysis for Interaction between Nanoparticles and Fluorescence Vesicle as a Biomimetic Cell for Toxicological Studies

  • Umh, Ha Nee;Kim, Younghun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3998-4002
    • /
    • 2012
  • With continuing progress of nanotechnologies and various applications of nanoparticles, one needs to develop a quick and fairly standard assessment tool to evaluate cytotoxicity of nanoparticles. However, much cytotoxicity studies on the interpretation of the interaction between nanoparticles and cells are non-mechanistic and time-consuming. Here, we propose a simple screening method for the analysis of the interaction between several AgNPs (5.3 to 64 nm) and fluorescence-dye containing vesicles ($12{\mu}m$) acting as a biomimetic cell-membrane. Fluorescence-dye containing vesicle was prepared using a fluorescence probe (1,6-diphenyl-1,3,5-hexatryene), which was intercalated into the lipid bilayer due to their hydrophobicity. Zeta potential of all materials except for bare-AgNPs (+32.8 mV) was negative (-26 to -54 mV). The morphological change (i.e., rupture and fusion of vesicle, and release of dye) after mixing of the vesicle and AgNPs was observed by fluorescence microscopy, and fluorescence image were different with coating materials and surface charge of x-AgNPs. In the results, we found that the surface charge of nanoparticles is the key factor for vesicle rupture and fusion. This proposed method might be useful for analyzing the cytotoxicity of nanoparticles with cell-membranes instead of in vitro or in vivo cytotoxicity tests.

Absorption and Fluorescence Spectroscopic Behavior of Thionine in the Presence of Sodium Dodecyl Sulfate (Sodium Dodecyl Sulfate 존재하에서 Thionine의 흡수 및 형광분광학적 성질)

  • Seong Gwan Kang;Chong Hoe Park;Minjoong Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.12
    • /
    • pp.857-863
    • /
    • 1994
  • The absorption and fluorescence spectroscopic studies on the interaction between thionine (TH) and sodium dodecyl sulfate (SDS) have been carried out. The absorption and fluorescence spectral changes of TH with the changes of concentration of SDS are interpreted in terms of i) the aggregation of TH-SDS complex, ii) the stacking process of dye molecules by the association of the TH-SDS complex, iii) breakdown of the stacking due to the formation of dye-rich induced micelles, iv) redistribution of dye molecules in the surface of SDS micelles.

  • PDF

Enhanced Light Harvesting from F$\ddot{o}$rst-type resonance Energy Transfer in the Quasi-Solid State Dye-Sensitized Solar Cells (F$\ddot{o}$rst energy transfer 를 적용한 준고체 DSSC 의 효율향상)

  • Cheon, Jong Hun;Lee, Jeong Gwan;Yang, Hyeon Seok;Kim, Jae Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.1-117.1
    • /
    • 2011
  • We have demonstrated Forst-type resonance energy transfer (FRET) in the quasi-solid type dye-sensitized solar cells between organic fluorescence materials as an energy donor doped in polymeric gel electrolyte and ruthenium complex as an energy acceptor on surface of $TiO_2$. The strong spectral overlap of emission/absorption of energy donor and acceptor is required to get high FRET efficiency. The judicious choice of energy donor allows the enhancement of light harvesting characters of energy acceptor in quasi-solid dye sensitized solar cells which increase the power conversion efficiency. The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

Synthesis of a Novel Near-Infrared Fluorescent Dye: Applications for Fluorescence Imaging in Living Cells and Animals

  • Chen, Tongbin;Lai, Yijun;Huang, Suisheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2937-2941
    • /
    • 2013
  • Fluorescence imaging is considered as one of the most powerful techniques for monitoring biomolecule activities in living systems. Near-infrared (NIR) light is advantageous for minimum photodamage, deep tissue penetration, and minimum background autofluorescence interference. Herein, we have developed a new NIR fluorescent dye, namely, RB-1, based on the Rhodamine B scaffold. RB-1 exhibits excellent photophysical properties including large absorption extinction coefficients, high fluorescence quantum yields, and high photostability. In particular, RB-1 displays both absorption and emission in the NIR region of the "biological window" (650-900 nm) for imaging in biological samples. RB-1 shows absorption maximum at 614 nm (500-725 nm) and emission maximum at 712 nm (650-825 nm) in ethanol, which is superior to those of traditional rhodamine B in the selected spectral region. Furthermore, applications of RB-1 for fluorescence imaging in living cells and small animals were investigated using confocal fluorescence microscopy and in vivo imaging system with a high signal-to-noise ratio (SNR = 10.1).