• 제목/요약/키워드: Fluidized reactor

검색결과 262건 처리시간 0.02초

산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(II) -유기물 충격 부하가 미생물 성장에 미치는 영향- (A Study on an Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(II) -Effect of Organic Shock Loading Rate on Biomass Characteristics-)

  • 안갑환;박영식;최윤찬;김동석;송승구
    • 한국환경과학회지
    • /
    • 제2권4호
    • /
    • pp.325-330
    • /
    • 1993
  • A number of experiments were conducted in order to investigate the organic removal efficiency and biomass characteristics according to the organic shock loading rate in a fluidized bed biofilm reactor. At the operation conditions of HRT, 8.44 hour, superficial upflow velocity, 0.9 cm/sec and temperature, 22$\pm$$1^{\circ}C$, the removal efficiency of SCOD was founded to be 96.5, 92 and 90 % with the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/m$^3$ㆍday, respectively. Within the F/M ratio ranged 0.4 to 2.0 kgCOD/kgVSSㆍday, the SCOD removal efficiency was shown as 90% at F/M ratio of 2.0 kgCOD/kgVSSㆍday, but the TCOD removal efficiency was 72 % at F/M ratio of 1.8 kgCOD/kgVSSㆍday. The average biomass concentrations were 7800, 14950 and 27532 mg/l on the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/$\textrm{m}^3$ㆍday, respectively. This result was agreed with the fact that more biomass could be produced at high concentration of substrate, but some biomass was detached at the onset of shock and easily acclimated at the shock condition.

  • PDF

UV/TiO2와 유동층 반응기를 이용한 안료의 광촉매 탈색 (Photocatalytic Decolorization of Dye usingUV/TiO2 and Fluidized Bed Reactor)

  • 박영식
    • 한국환경과학회지
    • /
    • 제13권10호
    • /
    • pp.921-928
    • /
    • 2004
  • The photocatalytic decolorization of Rhodamine B (RhB) was studied using immobilized $TiO_2$ and fluidized bed reactor. Immobilized $TiO_2$(length: 1$\~$2 mm, width: 1$\~$3 mm, thickness: 0.5$\~$2 mm) onto silicone sealant was employed as the photocatalyst and a 30 W germicidal lamp was used as the light source and the reactor volume was 4.8 L. The effects of parameters such as the amounts of photocatalyst, initial concentration, initial pH, superficial velocity, $H_2O_2$ and anion additives. ($NO_3^{-},\;SO_4^{2-},\;Cl^{-},\;CO_3^{2-}$) The results showed that the optimum dosage of the immobilized $TiO_2$ were 87.0 g/L. Initial removal rate of RhB of the immobilized $TiO_2$ was 1.5 times higher than that of the powder $TiO_2$ because of the adsorption onto the surface of immobilized $TiO_2$ In the conditions of acidic pH, initial reaction rate was increased slowly and reaction time was shorted. The effect of anion type on the reaction rate was not much.

고온건식탈황을 위한 유동층반응기 특성연구 (The Characteristics of Desulfurization for Dry-Type High Temperature in a Fluidized Bed Reactor)

  • 장현태
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.78-85
    • /
    • 1999
  • The removal characteristics of H$_2$S from IGCC process over the natural manganese ore(NMO) containing several metal oxides($MnO_x$ : 51.85%, $FeO_y$ : 3.86%, CaO : 0.11%) were carried out in a batch type fluidized bed reactor(I.D.=40mm, height=0.8m). The $H_2S$ breakthrough curves were obtained as a function of temperature, initial gas velocity, initial gas concentration, and aspect ratio. The effect of particle size ratio and particle mixing fraction on $H_2S$ removal were investigated with binary system of different particle size. From this study, the adsorption capacity of $H_2S$ increased with temperature but decreased with excess gas velocity. The breakthrough time for $H_2S$ is reduced as the gas velocity is increased which leaded to gas by-passing and gas-solid contacting in a fluidized bed reactor. The results of the binary particle system with different size in batch experimental could predict to improve the behavior of continuous process of $H_2S$ removal efficiency. The natural manganese ore could be considered as potential sorbent in $H_2S$ removal.

  • PDF

Tuning of Electro-optical Properties of Nano-structured SnO2:Ga Powders in a Micro Drop Fluidized Reactor

  • Lim, Dae Ho;Yang, Si Woo;Yoo, Dong June;Lee, Chan Gi;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • 제57권2호
    • /
    • pp.259-266
    • /
    • 2019
  • Tuning of electro-optical properties of nano-structured $SnO_2:Ga$ powders in a micro drop fluidized reactor (MDFR) was highly effective to enhance the activities of powders to be used as sensor materials. The tuning was conducted continuously in a facile one-step process during the formation of powders. The microscopic hydrodynamic forces affected the band gap structure and charge transfer of $SnO_2:Ga$ powders through the oxygen and interfacial tin vacancies by providing plausible pyro-hydraulic conditions, which resulted in the decrease in the electrical resistance of the materials. The analyses of room-temperature photoluminescence (PL) spectra and FT-IR exhibited that the tuning could improve the surface activities of $SnO_2:Ga$ powders by adjusting the excitation as well as separation of electrons and holes, thus maximizing the oxygen vacancies at the surface of the powders. The scheme of photocatalytic mechanism of $SnO_2:Ga$ powders was also discussed.

회분식 유동층 반응기에서 촉매함량 변화에 따른 WGS 촉매의 반응특성 (Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor)

  • 류호정;현주수;김하나;황택성
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.465-473
    • /
    • 2011
  • To find the optimum mixing ratio of WGS catalyst with $CO_2$ absorbent for SEWGS process, water gas shift reaction tests were carried out in a fluidized bed reactor using commercial WGS catalyst and sand (as a substitute for $CO_2$ absorbent). WGS catalyst content, gas velocity, and steam/CO ratio were considered as experimental variables. CO conversion increased as the catalyst content increased during water gas shift reaction. Variations of the CO conversion with the catalyst content were small at low gas velocity. However, those variations increased at higher gas velocity. Within experimental range of this study, the optimum operating condition(steam/CO ratio=3, gas velocity = 0.03 m/s, catalyst content=10 wt.%) to get high CO conversion and $CO_2$ capture efficiency was confirmed. Moreover, long time water gas shift reaction tests up to 20 hours were carried out for two cases (catalyst content = 10 and 20 wt.%) and we could conclude that the WGS reactivity at those conditions was maintained up to 20 hours.

유동상과 충전상이 결합된 혐기성 혼성 반응조에서 순환수의 인출지점이 처리효율에 미치는 영향 (Effects of the Recirculation Port Location on Treatment Efficiency of an Anaerobic Hybrid Reactor Consisted of a Fluidized Bed and a Packed Bed)

  • 김성용;박수영;조광명
    • 대한환경공학회지
    • /
    • 제22권11호
    • /
    • pp.1935-1944
    • /
    • 2000
  • 본 연구에서는 하부가 활성탄 유동상이고 상부가 플라스틱 충전상인 혐기성 혼성 반응조에서 활성탄충의 유동을 위한 내부순환수의 인출지점이 폐수처리 효율에 미치는 영향을 파악하기 위하여 순환수 인출지점이 유동상 위(R1 반응조) 또는 충전상 위(R2 반응조)에 위치하는 2개의 반응조에 인공폐수를 주입하여 실험을 수행하였다. 연구 결과, $6.2kg\; COD/m^3-day$의 유기물부하(OLR)까지는 R2 반응조의 COD 제거효율이 85.0-95.2%로, R1 반응조보다 좋았으나 그 차이는 크지 않았으며, 그 이상의 OLR에서는 두 반웅조의 COD 제거효율이 크게 악화되었는데 R2 반응조보다 R1 반응조에서 그 경향이 더 심하였다. R2 반응조가 R1 반응조 보다 대략 2배의 넓은 OLR 영역에서 안정적으로 운전되었는데 R2 반응조의 최대 메탄생성량은 $13.3kg\;COD/m^3-day$의 OLR에서$5.5kg\;COD/m^3-day$이었다. 또한 R1 반응조에서는 $6.2kg \;COD/m^3-day$ 이상의 OLR에서, 그리고 R2 반응조에서는 $7.1kg\; COD/m^3-day$ 이상의 OLR에서 처리수의 유기산 농도가 크게 증가하는 경향을 나타내었으며, 그 경향은 R1 반응조에서 더 현저하였다. 결론적으로 활성탄충의 유동을 위한 내부순환수의 인출지점에 따라 반응조가 처리가능한 유기물 부하 범위가 달라졌는데, 유기물 부하가 높을수록 내부순환수의 인출지점을 반응조 부피 전체를 이용할 수 있도록 충전상의 상부에 위치시키는 것이 더 바람직한 것으로 판단되었다.

  • PDF

카본블랙 촉매를 이용한 유동층 반응기에서 메탄의 직접 열 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed)

  • 정재욱;남우석;윤기준;이동현;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.284-287
    • /
    • 2005
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_2 - free$ hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane decomposition reaction was carried out at the temperature range of $850-925^{\circ}C$, methane gas velocity of $1.0U_{mf}\;3.0U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF

유동층 반응기에서 N330 카본 블랙 촉매를 이용한 프로판을 포함한 메탄의 촉매분해에 의한 수소 제조 (Hydrogen production by catalytic decomposition of propane-containing methane over N330 carbon black in a fluidized bed)

  • 이승철;이강인;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.761-764
    • /
    • 2009
  • The thermocatalytic decomposition of methane is an environmentally attractive approach to $CO_2$-free production of hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbon from the reactor. The usage of carbon black was reported as stable catalyst for decomposition of methane. Therfore, carbon black (DCC-N330) is used as catalyst. A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was selected for the thermo-catalytic decomposition. The porpane-containg methnae decomposition reaction was operated at the temperature range of 850-900 $^{\circ}C$ methane gas velocity of 1.0 $U_{mf}$ and the operating pressure of 1.0 atm. In this work, propane was added as reactant to make methane conversion higher. Therefore we compared with methane conversion and pre-experiment methane conversion that using only methane as reactant. The carbon black, after experiment, was measured in particle size and surface area and analyzed surface of the carbon black by TEM.

  • PDF

가압유동층 반응기에서 카본블랙 촉매를 이용한 메탄의 촉매분해에 의한 수소제조 (Hydrogen production by catalytic decomposition of methane over carbon black catalyst in a fluidized bed on pressurized bench-scale condition)

  • 서형재;이승철;이강인;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.791-793
    • /
    • 2009
  • Hydrogen has been recognized of the energy source for the future, in terms of the most environmentally acceptable energy source. A pressurized fluidized bed reactor made of carbon steel with 0.076 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce amount of $CO_2$ - free hydrogen with validity from a commercial point of view. The fluidized bed was proposed for withdrawing of product carbons from the reactor continuously. The methane decomposition rate with the carbon black N330 catalyst was rapidly reached a quasi-steady state and remained for several hour. The methane thermocatalytic decomposition reaction was carried out at the temperature range of 850 - 950 $^{\circ}C$, methane gas velocity of 2.0 $U_{mf}$ and the operating pressure of 1.0 -3.0 bar. Effect of operating parameters such as reaction temperature, pressure on the reaction rates was investigated and predicted the effect of a change in conditions on a chemical equilibrium thermodynamically, according to Le Chatelier's principle.

  • PDF

카본블랙 촉매를 이용한 유동층 반응기에서 메탄과 프로판 혼합물의 촉매 분해에 의한 수소생산 연구 (Hydrogen production by catalytic decomposition of methane and propane mixture over carbon black catalyst in a fluidized bed)

  • 이승철;윤용희;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.57-60
    • /
    • 2007
  • A fluidized bed reactor made of quartz with 0.055 m I.D. and 1.0 m in height was employed for the thermocatalytic decomposition of methane to produce $CO_{2}$ - free hydrogen. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. The methane decomposition rate with the carbon black N330 catalyst was quickly reached a quasi-steady state rate and remained for several hour. The methane and propane mixture decomposition reaction was carried out at the temperature range of 850 - 900 $^{\circ}C$, methane and propane mixture gas velocity of 1.0 $U_{mf}$ ${\sim}$ 3.0 $U_{mf}$ and the operating pressure of 1.0 atm. Effect of operating parameters such as reaction temperature, gas velocity on the reaction rates was investigated. The produced carbon by the methane decomposition was deposited on the surfaces of carbon catalysts and the morphology was observed by SEM image.

  • PDF