• Title/Summary/Keyword: Fluidization

Search Result 93, Processing Time 0.023 seconds

Effect of Pressure on Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier for Chemical Looping Combustor (케미컬루핑 연소를 위한 산소전달입자의 최소유동화속도 및 고속유동층 전이유속에 미치는 압력의 영향)

  • KIM, JUNGHWAN;BAE, DAL-HEE;BAEK, JEOM-IN;PARK, YEONG-SEONG;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.85-91
    • /
    • 2017
  • To develop a pressurized chemical looping combustor, effect of pressure on minimum fluidization velocity and transition velocity to fast fluidization was investigated in a two-interconnected pressurized fluidized bed system using oxygen carrier particle. The minimum fluidization velocity was measured by bed pressure drop measurement with variation of gas velocity. The measured minimum fluidization velocity decreased as the pressure increased. The transition velocity to fast fluidization was measured by emptying time method and decreased as the pressure increased. Gas velocity in the fuel reactor should be greater than the minimum fluidization velocity and gas velocity in the air reactor should be greater than the transition velocity to fast fluidization to ensure proper operation of two interconnected fluidized bed system.

An Experimental Study on the Fluidization and Heat Transfer Characteristics in the Gas-Solid Fluidized Bed Furnace (기일고(氣一固) 유동층노내(流動層爐內) 유동화(流動化) 및 전열특성(傳熱特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Choi, Gug-Gwang;Park, Jong-Suen
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.55-63
    • /
    • 1989
  • In this paper, the fluidization characteristics of the magnesia fluidized bed and the heat transfer characteristics with the specimen (SM55C) plunged in the bed have been investigated. To characterize the fluidization, the minimum fluidizing velocities and the relation ships between bed voidage and fluidization rate and obtained. To characterize heat transfer, the experiments for finding heating time transfer effect have been carried out by varying the magnesia particles sizes. optimum heating condition in the magnesia fluidized bed is obtained.

  • PDF

Hydrodynamics and Solid Circulation Characteristics of Oxygen Carrier for 0.5 MWth Chemical Looping Combustion System (0.5 MWth 케미컬루핑 연소시스템 적용을 위한 산소전달입자의 수력학 특성 및 고체순환 특성)

  • RYU, HO-JUNG;KIM, JUNGHWAN;HWANG, BYUNG WOOK;NAM, HYUNGSEOK;LEE, DOYEON;JO, SUNG-HO;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.635-641
    • /
    • 2018
  • To select the operating condition of 0.5 MWth chemical looping combustion system, minimum fluidization velocity, transition velocity to fast fluidization and solid circulation rate were measured using mass produced new oxygen carrier (N016-R4) which produced by spray drying method for 0.5 MWth chemical looping combustion system. A minimum fluidization velocity decreased as the pressure increased. The measured transition velocity to fast fluidization was 2.0 m/s at ambient temperature and pressure. The measured solid circulation rate increased as the solid control valve opening increased. We could control the solid circulation rate from 26 to $93kg/m^2s$. Based on the measured minimum fluidization velocity and transition velocity to fast fluidization, we choose appropriate operating conditions and demonstrated continuous solid circulation at high pressure condition (5 bar-abs) up to 24 hours.

The Fluidization of a Water Gas Shift Conversion Catalyst (水性가스 轉換反應觸媒의 流動化에 關하여)

  • Lee, Chai-Sung;Kim, Yeong U.
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.54-60
    • /
    • 1962
  • The water gas shift conversion catalyst prepared by the American Cyanamide Co. was subjected to fluidization in a 2-in. Pyrex glass tube to obtain the basic fluidization characteristic data. The size of the catalyst charged ranged from 70 to 120 meshes and it was supported on a single layer 300-mesh wire gauze through which the fluidizing medium, the air, was passed. Following are some data and facts found by the authors: (1) The catalyst particles were porous, and their surfaces were trough and irregular. (2) The average effective particle density and the average shape factor of these particles were 152.2 lb/$ft^3$ and 0.865 respectively. (3) As the particle diameter of the catalyst increased, the minimum fluid voidage of the bed decreased slightly. (4) Just before the incipient fluidization, pressure drop suddenly fell and the bed expanded simultaneously. (5) After fluidization set in, the expansion characteristics of the catalyst bed were similar to those of sand and glass beads except intense bubbling in the catalyst bed.

  • PDF

Tailings fluidization under cyclic triaxial loading - a laboratory study

  • Do, Tan Manh;Laue, Jan;Mattson, Hans;Jia, Qi
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.497-508
    • /
    • 2022
  • Tailings fluidization (i.e., tailings behave as being fluidized) under cyclic loading is one concern during the construction of tailings dams, especially in the shallow tailings layers. The primary goal of this study is to evaluate the responses of tailings under cyclic loadings and the tailings potential for fluidization. A series of cyclic triaxial undrained and drained tests were performed on medium and dense tailings samples under various cyclic stress ratios (CSR). The results indicated that axial strain and excess pore water pressure accumulated over time due to cyclic loading. However, the accumulations were dependent on CSR values, densities, and drainage conditions. The fluidization potential analysis in this study was then evaluated based on the obtained cyclic axial strain and excess pore water pressure. As a result, tailings samples were stable (unfluidized) under small CSR values, and the critical CSR values, where the tailings fluidized, varied depending on the density of tailings samples. Tailings fluidization is triggered as cyclic stress ratios reach critical values. In this study, the critical CSR values were found to be 0.15 and 0.40 for medium and dense samples, respectively.

A Study on the Minimum Fluidization Velocity and Expansion of Various Media (여과재(濾過材)의 종류(種類)에 따른 최소유동상(最小流動狀) 속도(速度) 및 팽창(膨脹)에 관한 연구(硏究))

  • Choi, Suingil;Choi, Joonsuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.55-69
    • /
    • 1996
  • Backwashing is one of the most important processes in water treatment. Several models have been utilized to predict minimum fluidization velocity and expansion of media. However, it is not unusual that the actual bahavior of media dose not agree well with the prediction. This study has investigated the applicability of models in predicting the minimum fluidization velocity of sand media. However even the better model has predicted minimum fluidization velocity 1.1 to 1.8 times higher than actual fluidization velocity. The expansion rate of sand media was inspected. It is found that the actual expansion rate was greater than the predicted. In this study condition, use of $d_{10}$ instead of $d_{60}$ was better to predict the expansion of media. On the contrary to the sand media, the actual expansion of anthracite media was less than that predicted. Sometimes it is reported that the dual media has been overflown during backwashing and mixed severely at the interface. It is because the grain size distribution of anthracite has not been selected properly. The numerical values for media expansion found in this study could be referred as the useful data in operating and/or designing filter media.

  • PDF

Optimization fluidization characteristics conditions of nickel oxide for hydrogen reduction by fluidized bed reactor

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Kim, Yong-Ha;Lee, Kwan-Young;Park, Young-Ok
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2321-2326
    • /
    • 2018
  • We evaluated the optimal conditions for fluidization of nickel oxide (NiO) and its reduction into high-purity Ni during hydrogen reduction in a laboratory-scale fluidized bed reactor. A comparative study was performed through structural shape analysis using scanning electron microscopy (SEM); variance in pressure drop, minimum fluidization velocity, terminal velocity, reduction rate, and mass loss were assessed at temperatures ranging from 400 to $600^{\circ}C$ and at 20, 40, and 60 min in reaction time. We estimated the sample weight with most active fluidization to be 200 g based on the bed diameter of the fluidized bed reactor and height of the stocked material. The optimal conditions for NiO hydrogen reduction were found to be height of sample H to the internal fluidized bed reactor diameter D was H/D=1, reaction temperature of $550^{\circ}C$, reaction time of 60 min, superficial gas velocity of 0.011 m/s, and pressure drop of 77 Pa during fluidization. We determined the best operating conditions for the NiO hydrogen reduction process based on these findings.

The Study of Synchronous Reduction-carbonization of $V_2O_3$, $Cr_2O_3$ and W-Co Composite Oxides in Fluidization

  • Gong, Nanyan;Ouyang, Yafei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.656-657
    • /
    • 2006
  • One append way of liquid state inhibitor was investigated, which putting V, Cr into W-Co composite solutions in the form of ionization. After spray drying and being calcined, W-Co composite oxides could come into being. Then taking fluidization techniques, well-proportioned W-Co composite powder compounded with inhibitor could be produced in the end.

  • PDF

Characteristics of Minimum Fluidization Velocity and Pressure Fluctuations in Annular Fluidized Beds (Annular 유동층 반응기에서 최소유동화 속도 및 압력요동 특성)

  • Son, Sung-Mo;Kim, Uk-Yeong;Shin, Ik-Sang;Kang, Yong;Choi, Myung-Jae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.707-713
    • /
    • 2008
  • Characteristics of minimum fluidization velocity and pressure fluctuations were investigated in an annular fluidized bed whose diameter was 0.102 m and 2.0 m in height. Effects of gas velocity, particle size and bed temperature on the minimum fluidization velocity and pressure fluctuations were examined. The values of minimum fluidization velocity obtained by means of three different methods were very similar each other. The correlation dimension could be a quantitative parameter for expression the resultant complex behavior of gas and solid mixture in the annular fluidized bed. The value of correlation dimension increased with increasing gas velocity, fluidized particle size and temperature in the bed. The minimum fluidization velocity could be determined by means of correlation dimension of pressure fluctuations as well as pressure drop in the bed and standard deviation of pressure fluctuations. The minimum fluidization velocity increased with increasing particle size but decreased with increasing bed temperature in annular fluidized beds. The minimum fluidization velocity was well correlated in therms of correlation dimension as well as operating variables within experimented conditions of this study.