• Title/Summary/Keyword: Fluidity Concrete

Search Result 497, Processing Time 0.026 seconds

Analyzing the Usable Range of Viscosity Modifying Admixture for Prevention Material Segregation of Normal Strength Grade Concrete (일반강도 콘크리트의 재료분리 발생 방지를 위한 증점제 사용 범위 분석)

  • Lee, Yu-Jeong;Han, Dong-Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.83-84
    • /
    • 2020
  • The purpose of this study is to achieve a sufficient fluidity without segregation for normal compressive strength grade concrete mixture. The major obstacle of achieving fluidity of normal compressive strength grade concrete mixture is segregation. Therefore, in this research, the proper use of VMA was suggested to prevent segregation.

  • PDF

Analyzing the VMA Performance for Segregation Resistance of Normal Compressive Strength Grade Concrete (일반강도 콘크리트의 재료 분리 발생 방지를 위한 증점제의 성능 분석)

  • Lee, Yu Jeong;Lee, Hyang Sun;Han, Dong Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.56-57
    • /
    • 2020
  • The purpose of this study is to achieve a sufficient fluidity without segregation for normal compressive strength grade concrete mixture. The major obstacle of achieving fluidity of normal compressive strength grade concrete mixture is segregation. Hence, in this research, VMA was used to prevent segregation.

  • PDF

Segregation Evaluation Method using J-Ring of High Strength High Fluidity Concrete (고강도 분체계 고유동 콘크리트의 J-Ring을 이용한 재료분리 판정 분석)

  • Lee, Hyuk-Ju;Lee, Young-Jun;Hyun, Seong-Yong;Han, Dong-Yeop;Han, In-Duck;Han, Min-Choel
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.157-158
    • /
    • 2018
  • In this study, the current tendency to replace a large amount of material admixture, which is fly ash (FA) and blast furnace slag (BS), into concrete is that high-grade cheese high admixture of high fluidity concrete In consideration of the substitution rate, we considered J-Ring to investigate the influence on the segregation resistance and the method of evaluating the classical segregation. In addition to the admixture replacement rate in the study results, the EIS using J-Ring became lower and the percentage of vehicles with segregation increased. Such a tendency is considered to be positive when J-Ring is used when segregation is judged if segregation degree is similar to EIS using J-Ring.

  • PDF

The Comparative Experimental Study of short and long-term Behavior of the Blended High-Fluidity Cement Concrete and Existing Nuclear Power Plant Structural Concrete (기존 원전용 콘크리트와 다성분계 고유동 콘크리트의 장·단기거동 비교 실험 연구)

  • Lee, Pyung-Suk;Kwon, Ki-Joo;Kim, Su-Man
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.195-202
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using flyash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

A Study on the Properties of High-Fluidity Concrete with Low Binders Using Viscosity Agent (증점제를 사용한 저분체 고유동 콘크리트의 특성에 관한 연구)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.689-696
    • /
    • 2017
  • The practical applications of ordinary high-fluidity concrete have been limited due to several drawbacks, such as high hydration heat, high amount of shrinkage, and non-economic strength development. On the other hand, due to its advantages, such as improvement of construction quality, reduction of construction cost and period, the development of high-fluidity concrete is a pressing need. This study examined the properties of high-fluidity concrete, which can be manufactured on the low binders using a viscosity agent to prevent the segregation of materials. The optimal viscosity agent was selected by an evaluation of the mechanical properties of high-fluidity concrete among six viscosity agents. The acrylic type and urethane type viscosity agents showed the best performance within the range where no material separation occurred. The mechanical properties were evaluated to examine the optimal amount of AC and UT viscosity agent added by mixing two viscosity agents according to the adding ratio and blending them together with high performance water reducing agent. When the ratio of the AC : UT viscosity agents was 5:5, it was most suited for high-fluidity concrete with low binders by increasing the workability and effect of the reducing viscosity.

Influence of Polycarboxylate type Superplasticizer on the Fluidity and Rate of Heat Liberation of Cement Paste (시멘트페이스트의 유동성 및 수화발열속도에 미치는 폴리카르본산계 고성능AE감수제의 영향)

  • Daiki, Atarashi;Song, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.813-816
    • /
    • 2008
  • Polycarboxylate-type superplasticizer is widely used for producing self-compacting and high-strength concrete and improving concrete durability. This paper discusses the influence of molecular structure of polycarboxylate-type superplasticizer on the fluidity and the rate of heat liberation of ordinary Portland cement paste. The fluidity of cement paste was increased by addition of polycarboxylate-type superplasticizer. The arrival time up to the maximum rate of heat liberation was increased by addition of polycarboxylate-type superplasticizer. The fluidity and the arrival time up to the maximum rate of heat liberation were more influenced by addition of polycarboxylate-type superplasticizer having shorter grafted chain than that having longer grafted chain.

  • PDF

A Study on Constructability Estimation of Multi-component High Fluidity Concrete based on Mock-up Test (모의실험체에 의한 다성분계 고유동 콘크리트의 시공성능 평가에 관한 연구)

  • Kwon, Ki-Joo;Noh, Jea-Myoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.75-82
    • /
    • 2010
  • As structures become larger, taller, and more diverse, a high degree of technology and expertise are required in the construction industry. However, it has been becoming difficult to construct under severe conditions and to fulfill the high performance needs of structures due to a lack of skilled construction engineers. To compensate for these weak points, high-performance concrete and performance specifications have been developed. The application of reliable high-fluidity concrete, which is one of these efforts, is expected to be effective in terms of overcoming severe conditions, reducing the number of workers required, and shortening the construction period. In order to apply high fluidity concrete in the field, practical mock-up tests were carried out to estimate whether self-compaction concrete could satisfy constructability needs. From the results, it was verified that the multi-component high fluidity concrete has excellent flowability in practical structures. In addition, it was shown that the temperature distribution in the concrete due to hydration heat is satisfactory. As a result, it is judged that multi-component high fluidity concrete can be utilized as an effective building material for various structures, including structures related to the electric power industry.

A Fundamental Study on the Workability Improvement and Strength Properties of Superplasticized Concrete(I) (Part 1, In the Case of Fluidity Performance and Properties of Fresh Concrete) (유동화 콘크리트의 시공성 향상 및 강도특성에 관한 기초적 연구(I) (제1보, 아직 굳지 않은 콘크리트의 유동화성상을 중심으로))

  • 김무한;권영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.15-20
    • /
    • 1989
  • The effect of superplasticizing agents on the sorkability performance in fresh concrete have been analyzed and investigated under various mix proportions of water cement ratio of 0.40, 0.50, 0.60 and 0.70, superplasticizing agents of NL-4000 and Rheobuild-716, and addition rate of sp. agents of 0.0, 0.5, 1.0, 1.5 and 2.0 in the practical range. It is the aim of this study to provide the fundamental data on the fluidity performance and workability improvement of superplasticized concrete such as time-dependent change of slump, flow value and compacting factor, air content, bleeding, mixing temperature and setting rate of fresh concrete comparing with base concrete and conventional concrete for the practical use and research data accumulation of superplasticized concrete in the side of development of concrete construction technology and management.

  • PDF

The Properties of High Flowing Cement Mortar with the Content of Limestone Grain (석회석 미분말의 함유율 변화에 따른 고유동 모르터의 특성)

  • 조중동;전충근;조병영;장기영;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.605-608
    • /
    • 1999
  • In this paper, the application of limestone grain, which produced by being gathered electrically in the process of manufacturing of cement, to high fluidity concrete are investigated. High fluidity mortar is used for this experiment. According to the experimental results, especially, high viscosity and the loss of air content are accomplished by applying limestone grain as the partial substitution of fine aggregates. In case of hardened mortar, high strength development at early age can be achieved by using limestone grain. But excessive dosage of limestone grain can cause high drying shrinkage.

  • PDF

An Experimental Studies on Properties of Antiwashout Admixtures (수중불분리성 혼화제의 성능평가를 위한 실험적 연구)

  • 문한영;김성수;이재준
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.51-60
    • /
    • 1999
  • When placed under water, concrete is diluted with separating cementitious material and as a result the quality of concrete becomes poor. So as to solve the problem, underwater concrete is increasingly used for the construction and repair of the concrete structure under water. In this paper, 4 kinds of antiwashout admixtures and varying sand percentages were chosen to measure the suspended solids, pH, air contents, setting time and compressive strength of underwater concrete, and they meet "Standard for antiwashout admixture used for concrete". When sand percentage is 43%, the fluidity and filling of underwater concrete are superior to the others.he others.