• Title/Summary/Keyword: Fluidic Valve

Search Result 20, Processing Time 0.03 seconds

Research Activities on Subsystem Technologies of PDE Propulsions (PDE 추진기관 부체계 기술 연구 동향)

  • Jin, Wan-Sung;Kim, Ji-Hoon;Hwang, Won-Sub;Kim, Jeong-Min;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.712-721
    • /
    • 2015
  • Pulse Detonation Engine (PDE) has been considered as a future propulsion system for broad range of operation and higher thermal efficiency. Various subsystem technologies have been studied for more than decade to improve the performance of the potential system. New valve systems has been developed for the stable operation at high frequency including inflow-driven valve, rotary valve and valveless system. To foster the detonation initiation with a little ignition energy, plasma ignition method and DDT (deflagration to detonation transition) acceleration method such as swept ramp mechanism have been studied. Fluidic nozzle system and other nozzle system are the ongoing research topics to maximize the propulsion performance of the PDE. Present paper introduces the state of the art of PDE subsystem technologies developed in recent years.

A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves (압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기)

  • Doh, Il;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.573-576
    • /
    • 2009
  • We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of $6.09{\pm}0.32{\mu}l/s$ over the inlet pressure range of $20{\sim}50$ kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems.

THE DESIGN FEATURES OF THE ADVANCED POWER REACTOR 1400

  • Lee, Sang-Seob;Kim, Sung-Hwan;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.995-1004
    • /
    • 2009
  • The Advanced Power Reactor 1400 (APR1400) is an evolutionary advanced light water reactor (ALWR) based on the Optimized Power Reactor 1000 (OPR1000), which is in operation in Korea. The APR1400 incorporates a variety of engineering improvements and operational experience to enhance safety, economics, and reliability. The advanced design features and improvements of the APR1400 design include a pilot operated safety relief valve (POSRV), a four-train safety injection system with direct vessel injection (DVI), a fluidic device (FD) in the safety injection tank, an in-containment refueling water storage tank (IRWST), an external reactor vessel cooling system, and an integrated head assembly (IHA). Development of the APR1400 started in 1992 and continued for ten years. The APR1400 design received design certification from the Korean nuclear regulatory body in May of2002. Currently, two construction projects for the APR1400 are in progress in Korea.

A Study on the Performance Characteristics of a New Bi-directional Micropump Using Piezoelectric Actuator (압전식 구동기를 이용한 양방향 마이크로 펌프의 성능에 관한 연구)

  • Choi Jong-Won;Yoon Jae-Sung;Kim Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.350-357
    • /
    • 2006
  • A new valveless micropump for bi-directional application has been developed and tested. The micropump was fabricated on silicon and glass substrates by micromachining process. The micropump in this study consists of a membrane actuator, a pumping chamber, fluidic channels and two piezoelectric ceramic films. The channels and pumping chamber were etched on a glass wafer and the membrane was made on a silion wafer which is actuated by a piezoelectric ceramic (PZT) film. The geometry of the micropump was optimized by numerical analysis and the performance of the micropump was investigated by the experiments. The maximum flow rate was $323{\mu}L/min$ and the maximum back pressure was 294 Pa when the membrane actuator of $10{\times}10mm^2$ was driven at 130 Hz and 385 V.

Reciprocating pump modeling for diagnosis (이상 진단을 위한 왕복동식 펌프 모델링)

  • Lee, Jong Kyeom;Chai, Jang bom;Lee, Jin Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.330-331
    • /
    • 2014
  • A mathematical model is suggested for diagnosis on a reciprocating pump. To the end, kinematic, thermodynamic and fluidic analyses are carried out for a simplified reciprocating pump model. The pressure inside the cylinder is expressed as a function of the rotation angle of a crank axle. The mathematical model consists of one cylinder with suction and discharge valves and an accumulator. The effect of valve leakage on the discharge angle is investigated. The discharge angle difference between normal state and leakage state increases with the leakage extent.

  • PDF

Pneumatic Grasp-and-Suction Soft Gripper with Variable Stroke (파지와 흡착이 가능한 가변 스트로크 공압 소프트 그리퍼)

  • Jun-Hyuck Ryoo;Sung-Jae Park;Hyo-Jong Jeon;Jae-Bok Song
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.3
    • /
    • pp.274-280
    • /
    • 2024
  • With the recent emergence of collaborative robots, demand for grippers to be used in service sites is increasing. Soft grippers have advantages in terms of compliance, cost, weight, and stability, but it is difficult to handle objects of various shapes, sizes, and weights with a single gripper. In this study, based on a fluidic elastomer actuator (FEA), we propose a pneumatic soft gripper that can grip a variety of objects, consisting of fingers capable of both grasping and vacuum suction and a base with variable stroke between the fingers using a pneumatic cylinder. A check valve is installed inside the finger, so that when positive pressure is supplied, the finger expands to perform adaptive grasping, and when negative pressure is supplied, vacuum suction can be performed. Grasping experiments were conducted on various objects to evaluate the performance of the proposed gripper, and 94% of 54 gripping objects were successfully grasped.

Characterization Tests on the SIT Injection Capability of the ATLAS for an APR1400 Simulation (APR1400 모의를 위한 ATLAS 안전주입탱크의 주입 성능에 관한 특성 시험)

  • Park, Hyun-Sik;Choi, Nam-Hyun;Park, Choon-Kyung;Kim, Yeon-Sik
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.67-76
    • /
    • 2008
  • A thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been constructed at KAERI (Korea Atomic Energy Research Institute). Recently several integral effect tests for the reflood period of a LBLOCA (Large Break LOss of Coolant Accident) of the APR1400 have been performed with the ATLAS. In the APR1400 a high flow condition is changed to a low flow condition due to an fluidic device during an operation of the SIT. As the self-controlled fluidic device was not installed in the ATLAS, a set of characterization tests was performed to simulate its injection capability from the SIT for the APR1400 simulation. In the ATLAS the required SIT flow rate in the high flow condition was acquired by installing orifices with an optimized flow area to throttle the SIT discharge line and the low flow condition was achieved by changing the opening of the flow control valve in the SIT injection line. The test results showed that the safety injection systems of the ATLAS could simulate the required high and low flow rates of the SIT for the APR1400 simulation efficiently.

Machining of The Micro Nozzle Using Focused Ion Beam (집속이온빔을 이용한 마이크로 노즐의 제작)

  • Kim G.H.;Min B.K.;Lee S.J.;Park C.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1194-1197
    • /
    • 2005
  • Micro nozzle is employed as a dynamic passive valve in micro fluidic devices. Micro nozzle array is used in micro droplet generation in bio-medical applications and propulsion device for actuating satellite and aerospace ship in vacuum environments. Aperture angle and the channel length of the micro nozzle affect its retification efficiency, and thus it is needed to produce micro nozzle precisely. MEMS process has a limit on making a micro nozzle with high-aspect ratio. Reactive ion etching process can make high-aspect ratio structure, but it is difficult to make the complex shape. Focused ion beam deposition has advantage in machining of three-dimensional complex structures of sub-micron size. Moreover, it is possible to monitor machining process and to correct defected part at simultaneously. In this study, focused ion beam deposition was applied to micro nozzle production.

  • PDF

Analysis on the Filling Mode of Liquid Oxygen to the Launch Vehicle Using Flowmaster (Flowmaster를 이용한 발사체 액체산소 충전 모드 해석)

  • Park, Soon-Young;Kim, Ji-Hoon;Park, Pyung-Gu;Yu, Byung-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.335-338
    • /
    • 2009
  • The process of charging an oxidizer in the liquid propellant rocket can divide into the cooling of the oxidizer tank, the high flow charge, the small flow charge, and the replenishment charge for the correction of temperature. The oxidizer of the Naro(KSLV-I) first stage uses the liquid oxygen. And the flow rate and the temperature specification corresponding to each charge mode are presented for the requirement. The flow throttling valve and heat exchanger are installed in the oxidizer filling system in order to satisfy this kind of the flow rate and temperature requirement specification. In this research, by using the Flowmaster which is a commercial one-dimension thermo-fluidic analysis program, one dimensional flow system analyses was performed to predict the exact flow rate at each specific mode. Also, the flow rate correction sensitivity of the flow control valves was analytically determined to satisfy the flow condition refinement at each mode within the limited certification test.

  • PDF

A Study of the Fluidic Characteristics of High-Pressure Fuel Pumps for GDI Engines (GDI 고압펌프의 유동특성에 관한 연구)

  • Lee, Sangjin;Noh, Yoojeong;Liu, Hao;Lee, Jae-Cheon;Shin, Yongnam;Park, Yongduk;Kang, Myungkweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.455-461
    • /
    • 2015
  • A high-pressure fuel pump is a key component in a gasoline direct injection (GDI) engine; thus, understanding its flow characteristics is essential for improving the engine power and fuel efficiency. In this study, AMESim, which is a hydraulic analysis program, was used to analyze the performance of the high-pressure fuel pump. However, since AMESim uses a one-dimensional model for the system analysis, it does not accurately analyze the complicated flow characteristics. Thus, Fluent, computational fluid dynamics (CFD) software, was used to calculate the flow rates and net forces at the intake and discharge ports of the high-pressure fuel pump where turbulent flow occurs. The CFD analysis results for various pressure conditions and valve lifts were used as look-up tables for the AMEsim model. The CFD analysis results complemented the AMEsim results, and thus, improved the accuracy of the performance analysis results for the high-pressure fuel pump.