• 제목/요약/키워드: Fluid-structure Interaction(FSI)

검색결과 237건 처리시간 0.023초

Two-Way Coupled Fluid Structure Interaction Simulation of a Propeller Turbine

  • Schmucker, Hannes;Flemming, Felix;Coulson, Stuart
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.342-351
    • /
    • 2010
  • During the operation of a hydro turbine the fluid mechanical pressure loading on the turbine blades provides the driving torque on the turbine shaft. This fluid loading results in a structural load on the component which in turn causes the turbine blade to deflect. Classically, these mechanical stresses and deflections are calculated by means of finite element analysis (FEA) which applies the pressure distribution on the blade surface calculated by computational fluid dynamics (CFD) as a major boundary condition. Such an approach can be seen as a one-way coupled simulation of the fluid structure interaction (FSI) problem. In this analysis the reverse influence of the deformation on the fluid is generally neglected. Especially in axial machines the blade deformation can result in a significant impact on the turbine performance. The present paper analyzes this influence by means of fully two-way coupled FSI simulations of a propeller turbine utilizing two different approaches. The configuration has been simulated by coupling the two commercial solvers ANSYS CFX for the fluid mechanical simulation with ANSYS Classic for the structure mechanical simulation. A detailed comparison of the results for various blade stiffness by means of changing Young's Modulus are presented. The influence of the blade deformation on the runner discharge and performance will be discussed and shows for the configuration investigated no significant influence under normal structural conditions. This study also highlights that a two-way coupled fluid structure interaction simulation of a real engineering configuration is still a challenging task for today's commercially available simulation tools.

Dynamic characteristics assessment of reactor vessel internals with fluid-structure interaction

  • Je, Sang Yun;Chang, Yoon-Suk;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1513-1523
    • /
    • 2017
  • Improvement of numerical analysis methods has been required to solve complicated phenomena that occur in nuclear facilities. Particularly, fluid-structure interaction (FSI) behavior should be resolved for accurate design and evaluation of complex reactor vessel internals (RVIs) submerged in coolant. In this study, the FSI effect on dynamic characteristics of RVIs in a typical 1,000 MWe nuclear power plant was investigated. Modal analyses of an integrated assembly were conducted by employing the fluid-structure (F-S) model as well as the traditional added-mass model. Subsequently, structural analyses were carried out using design response spectra combined with modal analysis data. Analysis results from the F-S model led to reductions of both frequency and Tresca stress compared to those values obtained using the added-mass model. Validation of the analysis method with the FSI model was also performed, from which the interface between the upper guide structure plate and the core shroud assembly lug was defined as the critical location of the typical RVIs, while all the relevant stress intensities satisfied the acceptance criteria.

유동-구조상관(FSI) 3차원 측정시스템에 의한 부유식 실린더 연동운동해석 (FSI Analysis on a Floating Cylinder by 3D Flow-Structure Interaction (FSI) Measurement System)

  • 도덕희;상지웅;황태규;편용범;백태실
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1574-1579
    • /
    • 2004
  • A simultaneous measurement system that can analyze the flow-structure interactions(FSI) has been constructed and analyses on the flow field and the motion field of a floating cylinder was made. The three-dimensional vector fields around the cylinder are measured by 3D-PTV technique while the motion of the cylinder forced by the flow field is measured simultaneously with a newly developed motion tracking algorithm(bidirectional tracking algorithm). The cylinder is pendant in the working fluid of a water channel and the surface of the working fluid is forced sinusoidal to make the cylinder bounced. The interaction between the flow fields and the cylinder motion is examined quantitatively.

  • PDF

Failure simulation of ice beam using a fully Lagrangian particle method

  • Ren, Di;Park, Jong-Chun;Hwang, Sung-Chul;Jeong, Seong-Yeob;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.639-647
    • /
    • 2019
  • A realistic numerical simulation technology using a Lagrangian Fluid-Structure Interaction (FSI) model was combined with a fracture algorithm to predict the fluid-ice-structure interaction. The failure of ice was modeled as the tensile fracture of elastic material by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) method. To verify the developed fracture algorithm, a series of numerical simulations for 3-point bending tests with an ice beam were performed and compared with the experiments carried out in an ice room. For application of the developed FSI model, a dropping water droplet hitting a cantilever ice beam was simulated with and without the fracture algorithm. The simulation showed that the effects of fracture which can occur in the process of a FSI simulation can be studied.

풍력발전기의 블레이드에 대한 FSI 해석 (FSI analysis on wind turbine blade)

  • 김윤기;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2829-2832
    • /
    • 2007
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF

안테나 결합형 수직 풍력터빈의 유체 구조 연성 해석 (Fluid-Structural Interaction Analysis of Vertical Wind Turbine Combined with Antenna)

  • 김성환;김익태
    • 공학기술논문지
    • /
    • 제11권4호
    • /
    • pp.237-243
    • /
    • 2018
  • The purpose of this study is to develop a vertical wind turbine with antenna structure in microgird environment. Computational fluid dynamics (CFD) was used to calculate the basic aerodynamic performance. The pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition and the Fluid Structure Interaction (FSI) was applied. The stability of the wind turbine was confirmed by checking the deformation and internal stress of wind turbine by wind force.

VOF와 FSI 방법을 적용한 CBT 연소 정밀 모델링 및 해석 (CBT Combustion Precise Modeling and Analysis Using VOF and FSI Methods)

  • 강정석;박종근;성홍계
    • 한국추진공학회지
    • /
    • 제26권5호
    • /
    • pp.35-43
    • /
    • 2022
  • 본 연구에서는 고체추진제를 사용하는 closed bomb test(CBT)의 연소에 대한 정밀 모델링 및 해석을 수행하였다. 기상과 고상을 동시에 해석하기 위해 fluid structure interaction(FSI) 기법을 사용하였으며 기체상과 그레인의 연소해석은 Eulerian 방법을, 그레인의 이동은 Lagrangian 방법을 적용하였다. 고체상의 그레인과 연소가스의 상호 작용은 소스텀을 통해 완전 결합(fully coupled) 되도록 하였다. 그레인의 연소거리와 연소면의 이동을 모사하기 위하여 volume of fluid(VOF) 방법을 사용하였고, 그레인에 작용하는 힘은 그레인 연소면에 작용하는 압력과 중력을 고려하고, VOF의 속도항에 그레인 연소속도와 그레인 이동속도를 고려하였다. 개발한 수치모델을 바탕으로 1개와 3개 그레인에 대한 연소해석을 수행하여 실험결과와 비교 검증하였다. 연소시에 나타나는 압력 섭동에 대한 음향장을 분석하였다.

유체 구조 연계 해석기법을 적용한 터보블로워 공력성능 해석에 관한 수치적 연구 (Numericla Study on the Aerodynamic Performances of the Turbo Blower Using Fluid-Structure Interaction Method)

  • 박태규;정희택;김형범;박준영
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.35-40
    • /
    • 2011
  • The present study aims at investigating the effect of the fluid-structure interaction on the aerodynamic performances in the turbo blower. The design specifications of the reference model driven by 400kW power were given as 7.43kg/s of mass flow rate, 1.66 of pressure ratio with 12000rpm of impeller rotating speed. Numerical simulation has been performed on the three cases based on the tip clearance between the impeller blade and the shroud. The CFX-turbo for flow fields and ANSYS-mechanical for structure domain were applied to solve the present FSI problems inside the turbo blower. Through the numerical results, the performances corrected by the FSI effects were proposed for the more reliable predictions.

ASSESSMENT OF THERMAL FATIGUE IN MIXING TEE BY FSI ANALYSIS

  • Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.99-106
    • /
    • 2013
  • Thermal fatigue is a significant long-term degradation mechanism in nuclear power plants. In particular, as operating plants become older and life time extension activities are initiated, operators and regulators need screening criteria to exclude risks of thermal fatigue and methods to determine significant fatigue relevance. In general, the common thermal fatigue issues are well understood and controlled by plant instrumentation at fatigue susceptible locations. However, incidents indicate that certain piping system Tee connections are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentations. Therefore, in this study thermal fatigue evaluation of piping system Tee-connections is performed using the fluid-structure interaction (FSI) analysis. From the thermal hydraulic analysis, the temperature distributions are determined and their results are applied to the structural model of the piping system to determine the thermal stress. Using the rain-flow method the fatigue analysis is performed to generate fatigue usage factors. The procedure for improved load thermal fatigue assessment using FSI analysis shown in this study will supply valuable information for establishing a methodology on thermal fatigue.

Numerical Investigation of Hemodynamics in a Bileaflet Mechanical Heart Valve using an Implicit FSI Based on the ALE Approach

  • Hong, Tae-Hyub;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2410-2414
    • /
    • 2008
  • Human heart valves diseased by congenital heart defects, rheumatic fever, bacterial infection, cancer may cause stenosis or insufficiency in the valves. Treatment may be with medication but often involves valve repair or replacement (insertion of an artificial heart valve). Bileaflet mechanical heart valves (BMHVs) are widely implanted to replace the diseased heart valves, but still suffer from complications such as hemolysis, platelet activation, tissue overgrowth and device failure. These complications are closely related to both flow characteristics through the valves and leaflet dynamics. In this study, the physiological flow interacting with the moving leaflets in a bileaflet mechanical heart valve (BMHV) is simulated with a strongly coupled implicit fluid-structure interaction (FSI) method which is newly organized based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (remeshing) in FLUENT. The simulated results are in good agreement with previous experimental studies. This study shows the applicability of the present FSI model to the complicated physics interacting between fluid flow and moving boundary.

  • PDF