• 제목/요약/키워드: Fluid-structural interaction

검색결과 349건 처리시간 0.029초

스테이터-로터 상호간섭 효과를 고려한 3차원 터빈 블레이드의 유체/구조 연계해석 (Fluid/structure Coupled Analysis of 3D Turbine Blade Considering Stator-Rotor Interaction)

  • 김유성;김동현;김요한;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.563-569
    • /
    • 2008
  • In this study, fluid/structure coupled analyses have been conducted f3r 3-D stator and rotor configuration. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate fluid/structure responses of general stator-rotor configurations. To solve the fluid/structure coupled problems, fluid domains are modeled using the structural grid system with dynamic moving and local deforming techniques. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3-D turbine blades for fluid-structure interaction (FSI) problems. Detailed fluid/structure analysis responses for stator-rotor interaction flow conditions are presented to show the physical performance and flow characteristics.

  • PDF

탱크 내부 유체 연성 효과에 의한 보강판의 진동 특성 연구 (A Study on Vibration Characteristic of Stiffened Plates with Fluid Coupling Effect inside a Tank)

  • 정우인;권종현;김문수
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2015년도 특별논문집
    • /
    • pp.56-62
    • /
    • 2015
  • In ship structure, many parts are in contact with inner or outer fluid as stern, ballast and oil tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these tanks in contact with fluid are significantly affected by fluid coupling effect. Therefore it is important to exactly predict vibration characteristics of tank structure. In order to estimate the vibration characteristics, the fluid-structure interaction(FSI) problem should be solved precisely. But it is difficult to estimate exactly the magnitude of the fluid coupling effect because it has some problems such as a fluid-structure interaction, influence by the free surface, vibration modes of structural panels and depth of water. In this paper, with fluid coupling effect, the effect of structural constraint between panels on the vibration characteristics are investigated numerically and discussed.

  • PDF

유체-구조물 상호작용을 고려한 직사각형 액체저장탱크의 단순해석법 (Simplified Analysis of Rectangular Liquid Storage Tanks Considering Fluid-Structure Interaction)

  • 이진호;조정래
    • 한국지진공학회논문집
    • /
    • 제26권5호
    • /
    • pp.203-209
    • /
    • 2022
  • A simplified method for earthquake response analysis of a rectangular liquid storage tank is proposed with fluid-structure interaction considered. In order to simplify the complex three-dimensional structural behavior of a rectangular liquid storage tank, it is assumed that structural deformation does not occur in the plane parallel to the direction in which the earthquake ground motion is applied but in the plane perpendicular to the direction. The structural deformation is approximated by combining the natural modes of the simple beam and the cantilever beam. The hydrodynamic pressure, the structure's mass and stiffness, and the hydrodynamic pressure's added mass are derived by applying the Rayleigh-Ritz method. The natural frequency, structural deformation, pressure, effective mode mass, and effective mode height of the rectangular liquid storage tank are obtained. The structural displacement, hydrodynamic pressure, base shear, and overturning moment are calculated. The seismic response analysis of an example rectangular liquid storage tank is performed using the proposed simplified approach, and its accuracy is verified by comparing the results with the reference solution by the finite element method. Existing seismic design codes based on the hydrodynamic pressure in rigid liquid storage tanks are observed to produce results with significant errors that cannot be ignored.

유체-구조물 상호작용이 원자로내부구조물의 동적응답에 미치는 영향 (The Effect of Fluid-Structure Interaction on the Dynamic Response of Reactor Internals)

  • 정명조;박찬국;황원걸
    • 전산구조공학
    • /
    • 제6권4호
    • /
    • pp.73-82
    • /
    • 1993
  • 원자로내부구조물은 유체속에 잠겨있기 때문에 동적해석시 이의 영향을 고려해야한다. 본 논문에서는 지진 및 배관파단에 대한 원자로내부구조물의 동적해석을 위한 비선형해석모델을 제시하였고 유체-구조물 상호작용의 효과를 고려하는 방법에 대하여 설명하였다. 실제 해석을 통하여 유체-구조물 상호작용이 원자로내부구조물의 응답에 미치는 영향을 조사한 결과 지진해석시에는 유체-구조물 상호작용을 나타내는 hydrodynamic coupling항이 첨가됨으로써 높은 응답이 나왔으나, 배관파단시에는 이와 반대의 결과가 나왔다.

  • PDF

Intra-luminal Thrombus Reduces Stress in the Aneurysm Wall: Fluid-Structure Interaction in Pulsatile Flow

  • Kim S. Y.;Kim Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.147-149
    • /
    • 2003
  • Using computational fluid dynamics with the fluid-structure interaction, structural effects of intra-luminal thrombus were determined in thrombosed axisymmetric abdominal aorta aneurysm (AAA) models under pulsatile flow. Four different models, varying dilatations of the aneurysm and Young's moduli of intra-luminal thrombus, were defmed. Compared with unthrombosed AAA models, both von Mises stress and radial displacements in the aneurysm wall significantly decreased. Stiffer intra-luminal thrombus reduced von Mises stress in the aneUtysm wall. The present study supported that intra-luminal thrombus might reduce wall stress in the aneurysm.

  • PDF

유체-구조 연성해석을 통한 삼각단면 형상의 비닐하우스에 관한 연구 (A study of the triangular cross section type greenhouse using fluid-structure interaction)

  • 이규한;김정재;김정주;이상준;하호진;강태원
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.17-24
    • /
    • 2019
  • The purpose of this study is to study the fluid-dynamic and structural characteristics of the conventional greenhouse and to find possible improvement on the current greenhouse. The greenhouse is required to have enough rigidity of the structure while the installation and reinforcement should be as easy as possible. In this study, the structural stability to the snow load was tested through the computational structure analysis based on the building structure standard, and the wind load was computed by computational fluid-structure interaction analysis. The current analysis can be used as a reference data for a new greenhouse and it will be economically viable by reducing installation and maintenance costs.

풍력발전기의 블레이드에 대한 FSI 해석 (FSI analysis on wind turbine blade)

  • 김윤기;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2829-2832
    • /
    • 2007
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF

비적합 유한요소망에 적용가능한 유체-구조물 연결 요소 (Acoustic Interface Element on Nonconformal Finite Element Mesh for Fluid-Structure Interaction Problem)

  • 조정래;이진호;조근희;윤혜진
    • 한국지진공학회논문집
    • /
    • 제27권4호
    • /
    • pp.163-170
    • /
    • 2023
  • In the fluid-structure interaction analysis, the finite element formulation is performed for the wave equation for dynamic fluid pressure, and the dynamic pressure is defined as a degree of freedom at the fluid nodes. Therefore, to connect the fluid to the structure, it is necessary to connect the degree of freedom of fluid dynamic pressure and the degree of freedom of structure displacement through an interface element derived from the relationship between dynamic pressure and displacement. The previously proposed fluid-structure interface elements use conformal finite element meshes in which the fluid and structure match. However, it is challenging to construct conformal meshes when complex models, such as water purification plants and wastewater treatment facilities, are models. Therefore, to increase modeling convenience, a method is required to model the fluid and structure domains by independent finite element meshes and then connect them. In this study, two fluid-structure interface elements, one based on constraints and the other based on the integration of nonsmooth functions, are proposed in nonconformal finite element meshes for structures and fluids, and their accuracy is verified.

Two-Way Coupled Fluid Structure Interaction Simulation of a Propeller Turbine

  • Schmucker, Hannes;Flemming, Felix;Coulson, Stuart
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.342-351
    • /
    • 2010
  • During the operation of a hydro turbine the fluid mechanical pressure loading on the turbine blades provides the driving torque on the turbine shaft. This fluid loading results in a structural load on the component which in turn causes the turbine blade to deflect. Classically, these mechanical stresses and deflections are calculated by means of finite element analysis (FEA) which applies the pressure distribution on the blade surface calculated by computational fluid dynamics (CFD) as a major boundary condition. Such an approach can be seen as a one-way coupled simulation of the fluid structure interaction (FSI) problem. In this analysis the reverse influence of the deformation on the fluid is generally neglected. Especially in axial machines the blade deformation can result in a significant impact on the turbine performance. The present paper analyzes this influence by means of fully two-way coupled FSI simulations of a propeller turbine utilizing two different approaches. The configuration has been simulated by coupling the two commercial solvers ANSYS CFX for the fluid mechanical simulation with ANSYS Classic for the structure mechanical simulation. A detailed comparison of the results for various blade stiffness by means of changing Young's Modulus are presented. The influence of the blade deformation on the runner discharge and performance will be discussed and shows for the configuration investigated no significant influence under normal structural conditions. This study also highlights that a two-way coupled fluid structure interaction simulation of a real engineering configuration is still a challenging task for today's commercially available simulation tools.