• Title/Summary/Keyword: Fluid-dynamic Forces

Search Result 166, Processing Time 0.03 seconds

Thermochemical Performance Analysis of Hydrazine Arc Thruster (하이드라진 아크 추력기의 열화학적 성능해석)

  • Shin Jae-Ryul;Oh Se-Jong;Choi Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.35-38
    • /
    • 2005
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant hydrazine ($N_{2}H_4$) as a working fluid. Coupled Reynolds Averaged Navier-Stokes (RANS) equations and Maxwell equations were used to account for the Ohm heating and Lorentz forces. Hydrazine chemistry and thermal radiation were also incorporated to the fluid dynamic equations by assuming infinitely-fast reactions and optically thick media. In addition to the thermo-physical understandings of the flow field inside the arcjet thruster, results shows that performance indices are improved by amount of $20\%$ in thrust and $200\%$ in specific impulse with the 0.6kW are heating.

  • PDF

Chemical Equilibrium Flow and Performance Analysis of the Arcjet Thruster with Ionization Effects (이온화를 고려한 Arcjet 추력기의 화학 평형 유동 및 성능해석)

  • Shin Jae-Ryul;Oh Se-Jong;Choi Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.132-135
    • /
    • 2005
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant hydrazine $(N_2H_4)$ as a working fluid. Coupled Reynolds Averaged Navier-Stokes (RANS) equations and Maxwell equations were used to account for the Ohm heating and Lorentz forces. ionization and thermal radiation effects were also incorporated to the fluid dynamic equations by assuming infinitely-fast reactions and optically thick media. In addition to the thermo-physical understandings of the flow field inside the arcjet thruster, results shows that performance indices are improved by amount of 20% in thrust and 70% in specific impulse with the 0.6kW are heating.

  • PDF

Quasi-Steady Damping Force of Electro- and magneto-Rheo logical Flow Mode Dampers using Herschel-Bulkley Model (Herschel-Bulkley 모델에 의한 전기 및 자기장 유체 댐퍼의 준안정 상태 댐핑력 해석)

  • Lee, Dug-Young;Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1298-1302
    • /
    • 2000
  • Electrorheological(HER) and magnetorheologica(MR) fluids have a unique ability to increase the dynamic yield stress of the fluid substantially when electric or magnetic field is applied. ER and MR fluid-based dampers are typically analyzed using Bingham-plastic shear flow analysis under Quasi-steady fully developed flow conditions. An alternative perspective, supported by measurements reported in the literature, is to allow for post-yield shear thinning and shear thickening. To model these, the constant post-yield plastic viscosity in Bingham model can be replaced with a power-law model dependent on shear strain rate that is known as the Herschel-Bulkley fluid model. The objective of this paper is to predict the damping forces analytically in a typical ER bypass damper for variable electric field, or yield stress using Herschel-Bulkley analysis.

  • PDF

Performance Investigation of a Continuously Variable ER Damper for Passenger Vehicles (승용차용 연속가변 ER댐퍼의 성능연구)

  • Kim, K.S.;Chang, E.;Choi, S.B.;Cheong, C.C.;Suh, M.S.;Yeo, M.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.69-77
    • /
    • 1995
  • This paper presents performance investigation of a continuously variable ER(Electro-Rheological) damper for passenger vehicles. A dynamic model of the damper is formulated by incorporating electric field-dependent Bingham properties of the ER fluid. The Bingham properties are experimentally obtained through Couette type electroviscous measurement with respect to two different particle concentrations. The governing equation of the hydraulic model treating three components of fluid resistances;electrode duct flow, check valve flow and piston gap flow, is achieved via the bond graph method. A prototype ER damper is then designed and manufactured on the basis of parameter analysis. The damping forces of the system are experimentally evaluated by changing the intensity of the electric field, the particle concentration and the electrode gap.

  • PDF

FLUID-STRUCTURE INTERACTION ANALYSIS FOR VORTEX-INDUCED VIBRATION OF CIRCULAR CYLINDER (유체-구조 연성해석을 통한 원주의 와유기 진동 해석)

  • Kim, S.H.;Ahn, H.T.;Ryue, J.S.;Shin, H.K.;Kwon, O.J.;Seo, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • Fluid-Structure Interaction analysis of a circular cylinder surrounded by incompressible turbulent flow is presented. The fluid flow is modeled by incompressible Navier-Stokes equations in conjunction with large-eddy simulation for turbulent vortical flows. The circular cylinder is modeled as elastic continuum described by elasto-dynamic equation of motion. Finite element method based approach is utilized for unified formulation of fluid-structure interaction analysis. The magnitude and frequency of structural response is analysed in comparison to the driving fluid forces.

Numerical Modeling of Hydrazine-Fueled Arcjet Thruster (하이드라진(N2H4) 아크젯 추력기의 수치적 모델링)

  • Shin, Jae-Ryul;Lee, Dae-Sung;Oh, Se-Jong;Choi, J.-Y.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.907-915
    • /
    • 2008
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. the Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optical thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition thermo-physical process inside the arcjet thruster is understood from the flow field results.

Analysis on Dynamic Characteristics of Air-Pressure Type Chamber in Puffer Circuit Breaker (공압식 조작기의 동작특성에 관한 해석)

  • Park, Sang-Hun;Bae, Chae-Yoon;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.18-20
    • /
    • 2002
  • In this paper, various forces generated in the Gas Circuit Breaker(GCB) such as operating force, repulsive force, spring force, and dashpot force are analyzed with the fluid properties and the mechanical structure. The operation of GCB can be understood. A stroke curve from the result of simulation is compared with experimental one.

  • PDF

Approximated Generalized Torques by the Hydrodynamic Forces Acting on Legs of an Underwater Walking Robot

  • Jun, Bong-Huan;Shim, Hyung-Won;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.222-229
    • /
    • 2011
  • In this paper, we present the concept and main mission of the Crabster, an underwater walking robot. The main focus is on the modeling of drag and lift forces on the legs of the robot, which comprise the main difference in dynamic characteristics between on-land and underwater robots. Drag and lift forces acting on the underwater link are described as a function of the relative velocity of the link with respect to the fluid using the strip theory. Using the translational velocity of the link as the rotational velocity of the joint, we describe the drag force as a function of joint variables. Generalized drag torque is successfully derived from the drag force as a function of generalized variables and its first derivative, even though the arm has a roll joint and twist angles between the joints. To verify the proposed model, we conducted drag torque simulations using a simple Selective Compliant Articulated Robot Arm.

Numerical Investigation of Countermeasure Effects on Overland Flow Hydrodynamic and Force Mitigation in Coastal Communities

  • Hai Van Dang;Sungwon Shin;Eunju Lee;Hyoungsu Park;Jun-Nyeong Park
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.364-379
    • /
    • 2022
  • Coastal communities have been vulnerable to extreme coastal flooding induced by hurricanes and tsunamis. Many studies solely focused on the overland flow hydrodynamic and loading mechanisms on individual inland structures or buildings. Only a few studies have investigated the effects of flooding mitigation measures to protect the coastal communities represented through a complex series of building arrays. This study numerically examined the performance of flood-mitigation measures from tsunami-like wave-induced overland flows. A computational fluid dynamic model was utilized to investigate the performance of mitigation structures such as submerged breakwaters and seawalls in reducing resultant forces on a series of building arrays. This study considered the effects of incident wave heights and four geometrically structural factors: the freeboard, crest width of submerged breakwaters, and the height and location of seawalls. The results showed that prevention structures reduced inundation flow depths, velocities, and maximum forces in the inland environment. The results also indicated that increasing the seawall height or reducing the freeboard of a submerged breakwater significantly reduces the maximum horizontal forces, especially in the first row of buildings. However, installing a low-lying seawall closer to the building rows amplifies the maximum forces compared to the original seawall at the shoreline.

Estimating the maximum pounding force for steel tall buildings in proximity subjected to wind

  • Tristen Brown;Ahmed Elshaer;Anas Issa
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.47-69
    • /
    • 2024
  • Pounding of structures may result in considerable damages, to the extent of total failure during severe lateral loading events (e.g., earthquakes and wind). With the new generation of tall buildings in densely occupied locations, wind-induced pounding becomes of higher risk due to such structures' large deflections. This paper aims to develop mathematical formulations to determine the maximum pounding force when two adjacent structures come into contact. The study will first investigate wind-induced pounding forces of two equal-height structures with similar dynamic properties. The wind loads will be extracted from the Large Eddy Simulation models and applied to a Finite Element Method model to determine deflections and pounding forces. A Genetic Algorithm is lastly utilized to optimize fitting parameters used to correlate the maximum pounding force to the governing structural parameters. The results of the wind-induced pounding show that structures with a higher natural frequency will produce lower maximum pounding forces than those of the same structure with a lower natural frequency. In addition, taller structures are more susceptible to stronger pounding forces at closer separation distances. It was also found that the complexity of the mathematical formula from optimization depends on achieving a more accurate mapping for the trained database.