• Title/Summary/Keyword: Fluid-bed

Search Result 219, Processing Time 0.028 seconds

Physicochemical and Sensory Characteristics of Green Prunus mume Powder Granule (청매분말과립의 물리화학적 및 관능적 특성)

  • Shin, Myung-Gon;Lee, Gyu-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.970-974
    • /
    • 2012
  • Prunus mume is said to aid in the recovery of fatigue and improvement of liver and stomach functions. To obtain the best benefits of the whole fruit, fresh green Prunus mume was de-seeded and the fruit pulp was vacuum dried. The vacuum-dried pulp was powdered and sieved through a 250 ${\mu}m$ sieve. Then the sieved green Prunus mume powder (GPP) was granulated with water (GPPGW) and with Prunus mume extract (GPPGE) with a fluid bed coater. The physicochemical and sensory properties of GPP, GPPGW, and GPPGE were then evaluated. As a result, the water dispersibility (dispersible time) of GPP, GPPGW, and GPPGE was 21.19 sec, 6.46 sec, and 4.85 sec, respectively. The powder fluency (angle of repose) of GPP, GPPGW, and GPPGE was $11.25^{\circ}$, $8.65^{\circ}$, and $9.52^{\circ}$, respectively. The overall consumer acceptance of GPP, GPPGW, and GPPGE was 3.50, 4.62 and 5.00, respectively. Inconclusion, Prunus mume can be used as granulated whole fruit pulp with good powder fluency and dispersibility.

Creative Curiosity: Study of Alice Character in Lewis Caroll's Adventures of Alice in Wonderland (창조적 호기심 루이스 캐럴의 『이상한 나라의 앨리스의 모험』 연구)

  • Cho, Sungran
    • Cross-Cultural Studies
    • /
    • v.41
    • /
    • pp.299-320
    • /
    • 2015
  • Lewis Carroll's Alice's Adventures in Wonderland expands scope of Children's Literature genre by introducing the discourse of pleasure as opposed to that of didactic discipline. Carroll's narrative is important, not only for children's literature, but also as a forerunner of post/modernism of James Joyce with its language play and linguistic invention. Its treatment of Alice's body change follows the motif of body transformation in myth and literature. Comparing "stasis" of Susan Sontag's character Alice (James) in her play Alice in Bed and "movement" of Carroll's Alice, this study explores the issues of woman's alienation and the dichotomy of mobility/immobility in reality and in their literary representations. Focusing on a female child's double alienation as woman and child, I argue Alice's Adventures in Wonderland is a counter-narrative of alternative bildungsroman. Alice gains her subjectivity through her adventure by power of language and story-telling. Through representation of the dream/adventure of two desiring sisters, Carroll's narrative exhibits subversion of social order and emergence of new order of "chaosmos" out of chaos. As a method of study, this study traces genealogy of "curiosity" in myth and literature as a motivating force that triggers adventure and argues "creative curiosity" is a dynamic energy propelling Alice's adventure.

Evolution of Process and Outcome Measures during an Enhanced Recovery after Thoracic Surgery Program

  • Lee, Alex;Seyednejad, Nazgol;Lawati, Yaseen Al;Mattice, Amanda;Anstee, Caitlin;Legacy, Mark;Gilbert, Sebastien;Maziak, Donna E.;Sundaresan, Ramanadhan S.;Villeneuve, Patrick J.;Thompson, Calvin;Seely, Andrew J.E.
    • Journal of Chest Surgery
    • /
    • v.55 no.2
    • /
    • pp.118-125
    • /
    • 2022
  • Background: A time course analysis was undertaken to evaluate how perioperative process-of-care and outcome measures evolved after implementation of an enhanced recovery after thoracic surgery (ERATS) program. Methods: Outcome and process-of-care measures were compared between patients undergoing major elective thoracic surgery during a 9-month pre-ERATS implementation period to those at 1-3, 4-6, and 7-9 months post-ERATS implementation. Outcome measures included length of stay, the 30-day readmission rate, 30-day emergency department visits, and minor and major adverse events. Process measures included first time to activity, out-of-bed, ambulation, fluid diet, diet as tolerated, as well as removal of the first and last chest tube, epidural, patient-controlled analgesia, and Foley and intravenous catheters. Results: In total, 704 patients (352 pre-ERATS, 352 post-ERATS) were included. Mobilization-related process measures, including time to first activity (16.5 vs. 6.8 hours, p<0.001), out-of-bed (17.6 vs. 8.9 hours, p<0.001), and ambulation (32.4 vs. 25.4 hours, p=0.04) saw statistically significant improvements by 1-3 months post-ERATS implementation compared to pre-ERATS. Time to Foley removal improved by 4-6 months post-ERATS (19.5 vs. 18.2 hours, p=0.003). Outcome measures, including the 30-day readmission rate and emergency department visits, steadily decreased post-ERATS. By 7-9 months post-ERATS, both minor (18.2% vs. 7.9%, p=0.009) and major (13.6% vs. 4.4%, p=0.007) adverse events demonstrated statistically significant improvements. Length of stay trended towards improvement from 6.2 days pre-ERATS to 4.8 days by 7-9 months post-ERATS (p=0.06). Conclusion: The adoption of ERATS led to improvements in multiple process-of-care measures, which may collectively and gradually achieve optimization of clinical outcomes.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013 (설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

Study on Thermal Behavior and Design Method for Coil-type PHC Energy Pile (코일형 PHC 에너지파일의 열적 거동 및 설계법에 관한 연구)

  • Park, Sangwoo;Sohn, Jeong-Rak;Park, Yong-Boo;Ryu, Hyung-Kyou;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.37-51
    • /
    • 2013
  • An energy pile encases heat exchange pipes to exchange thermal energy with the surrounding ground formation by circulating working fluid through the pipes. An energy pile has many advantages in terms of economic feasibility and constructability over conventional Ground Heat Exchangers (GHEXs). In this paper, a coil-type PHC energy pile was constructed in a test bed and its thermal performance was experimentally and numerically evaluated to make a preliminary design. An in-situ thermal response test (TRT) was performed on the coil-type PHC energy pile and its results were compared with the solid cylinder source model presented by Man et al. (2010). In addition, a CFD numerical analysis using FLUNET was carried out to back-analyze the thermal conductivity of the ground formation from the Ttype PHC energy RT result. To study effects of a coil pitch of the coil-type heat exchange pipe, a thermal interference between the heat exchange pipes in PHC energy piles was parametrically studied by performing the CFD numerical analysis, then the effect of the coil pitch on thermal performance and efficiency of heat exchange were evaluated. Finally, an equivalent heat exchange efficiency factor for the coil-type PHC energy pile in comparison with a common multiple U-type PHC energy pile was obtained to facilitate a preliminary design method for the coil-type PHC energy pile by adopting the PILESIM2 program.

State-of-arts in Multiscale Simulation for Process Development (공정개발을 위한 다규모 모사에서의 연구현황)

  • Lim, Young-Il
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.10-24
    • /
    • 2013
  • The state-of-arts of multiscale simulation (MSS) in science and engineering is briefly presented and MSS for process development (PD-MSS) is proposed to effectively apply the MSS to the process development. The four-level PD-MSS is composed of PLS (process-level simulation), FLS (fluid-level simulation), mFLS (microfluid-level simulation) and MLS (molecular-level simulation). Characteristics and methods of each level, as well as connectivity between the four levels are described. For example in PD-MSS, absorption column, fluidized-bed reactor, and adsorption process are introduced. For successful MSS, it is necessary to understand the multiscale nature in chemical engineering problems, to develop models representing physical phenomena at each scale and between scales, to develop softwares implementing mathematical models on computer, and to have strong computing facilities. MSS should be performed within acceptable accuracy of simulation results, available computation capacity, and reasonable efficiency of calculation. Macroscopic and microscopic scale simulations have been developed relatively well but mesoscale simulation shows a bottleneck in MSS. Therefore, advances on mesoscale models and simulation tools are required to accurately and reliably predict physical phenomena. PD-MSS will find its way into a sustainable technology being able to shorten the duration and to reduce the cost for process development.

Studies on the supercritical fluid extraction of taxol from yew tree (초임계 유체를 이용한 주목 수피로부터 taxol의 추출에 관한 연구)

  • 서정혁;조병관변상요김공환
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.71-76
    • /
    • 1996
  • Studies were carried out to examine some factors affecting the supercritical carbon dioxide extraction of taxol from the bark of Taxus cuspidata using a continuous packed bed extractor. The factors investigated in this study were pressure, temperature, volume of carbon dioxide, and co-solvent. It was found out that the amount of taxol extracted was not significantly affected by the operating pressure in the absence of a co-solvent although it increased by about 20% at 5500 psig. With $24\ell$ of carbon dioxide the saturated amount of taxol was extracted at 318K and 5500psig. Methanol was found to be the most effective co-solvent in terms of amount of taxol extracted among six different co-solvents used. When methanol was used as a co-solvent the effect of operating pressure became significant; approximately 50% increase in the amount of taxol extracted was observed at 3000 psig as compared to at 2500 or 3500psig. The optimum methanol concentration in supercritical fluid was 13% (w/w)at 308K, 3000psig.

  • PDF

Analysis of Hydraulic effects on Piers and Transverse Overflow Type Structures in Urban Stream (도시하천의 교각 및 횡단 월류형 구조물에 의한 수리영향 분석)

  • Yoon, Sun-Kwon;Chun, Si-Young;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.197-212
    • /
    • 2008
  • Recently, stream flow analysis has been accomplished by one or two dimensional equations and was applied by simple momentum equations and fixed energy conservations which contain many condition limits. In this study, FLOW-3D using CFD (Computational Fluid Dynamics) was applied to stream flow analysis which can solve three dimensional RANS (Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behaviors and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as ${\kappa}-{\varepsilon}$, RNG (Renormalized Group) ${\kappa}-{\varepsilon}$ and LES (Large Eddy Simulation). Numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow, water level pressure and eddy flows around the piers and transverse overflow type structures. These results will be able to used by basis data that catch hold of effects on long-term bed elevation changes, sediment accumulations, scours and water aggravations by removal of obsolete transverse over flow type structures in urban stream.

Computational Analysis of Parabolic Overtopping Wave Energy Convertor (포물선형 월류파력발전장치에 대한 수치해석)

  • Liu, Zhen;Hyun, Beom-Soo;Jin, Ji-Yuan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.273-278
    • /
    • 2009
  • Overtopping Wave Energy Convertor (OWEC) is an offshore wave energy convertor for collecting the overtopping waves and converting the water pressure head into electric power through the hydro turbines installed in the vertical duct which is fixed in the sea bed. The numerical wave tank based on the commercial computational fluid dynamics code Fluent is established for the corresponding analysis. Several incident wave conditions and shape parameters of the overtopping device are calculated. The straight line type and parabolic type of the sloping arm are compared in the optimal designing investigation of the overtopping characteristics and discharge for OWEC device. The numerical results demonstrate that the parabolic sloping arm is available for wave running up and the overtopping discharge increasing.

  • PDF

A study on the coal gasification modeling in an Entrained Flow Gasifier (분류층 반응기에서의 석탄가스화 모델링 연구)

  • Ju, Jisun;Chi, Junhwa;Chung, Jaehwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.106.1-106.1
    • /
    • 2010
  • 석탄가스화기술은 매장량이 풍부하여 안정적인 공급이 보장되는 석탄을 이용함과 동시에 환경오염물질 감소라는 사회적 요구조건을 충족시키면서 화학제품, 석탄-가스화, 석탄-디젤화, 연료전지, 복합발전 등 다양한 분야에 응용이 가능한 장점이 있다. 특히 석탄가스화복합기술(Intergrated Coal Gasification Combined Cycle, IGCC)은 석탄을 고온, 고압하에서 가스화시켜 일산화탄소(CO), 수소($H_2$)가 주성분인 합성가스를 제조, 정제 후 가스터빈 및 증기터빈을 복합으로 구동하여 전기를 생산하는 친환경 차세대 발전기술로 주목을 받고 있다. 현재 IGCC 기술은 세계적으로 볼 때 상용화단계에 있고, 우리나라의 경우 한국형 IGCC 기술의 확보를 위한 연구사업이 진행중에 있다. 본 연구는 IGCC 발전플랜트의 발전효율을 결정하는 가장 중요한 부분이라 할 수 있는 가스화반응기의 모델링 기술을 개발하는 목적으로 진행되었다. 본 연구에서는 석탄가스화 반응기에서 발생하는 석탄의 휘발화와 Char의 표면반응 그리고 기상에서의 가스화반응등의 현상을 전산유체역학(Computational Fluid Dynamics)을 이용하여 모델링하는 방법론이 연구되었다. 해석을 위한 형상은 해석에 소요되는 시간을 줄이고, 형상이 해석결과에 미치는 영향을 줄이고자 2차원으로 구성하였다. 해석을 위한 수학적모델으로는 난류모델, 가스화반응모델, Lagrangian particle tracking, Char reaction 등을 포함하였고, 해석을 위한 Solver는 Fluent를 이용하였다. 모델링결과에 의해 예측되는 합성가스의 조성을 상용급 IGCC 가스화기의 운전결과와 비교해 본 결과 본 연구에서 설정한 모델로 예측되는 온도 및 가스농도가 실험치와 유사하게 나타남을 알 수 있었고 이를 통하여 본 연구에서 설정한 모델링방법이 적절함을 알 수 있었다.

  • PDF