• Title/Summary/Keyword: Fluid filtration

Search Result 83, Processing Time 0.021 seconds

Motion behavior research of liquid micro-particles filtration at various locations in a rotational flow field

  • Yan, Yan;Lin, Yuanzai;Cheng, Jie;Ni, Zhonghua
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • This study presents a particle-wall filtration model for predicting the particle motion behavior in a typical rotational flow field-filtration in blower system of cooker hood. Based on computational fluid dynamics model, air flow and particles has been simulated by Lagrangian-particle/ Eulerian-gas approaches and get verified by experiment data from a manufacturer. Airflow volume, particle diameter and local structure, which are related to the particle filtration has been studied. Results indicates that: (1) there exists an optimal airflow volume of $1243m^3/h$ related to the most appropriate filtration rate; (2) Diameter of particle is the significant property related to the filtration rate. Big size particles can represent the filtration performance of blower; (3) More than 86% grease particles are caught by impeller blades firstly, and then splashed onto the corresponding location of worm box internal wall. These results would help to study the micro-particle motion behavior and evaluate the filtration rate and structure design of blower.

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

Aanalyze the Fluid Inside the Ceramic Filtration Dust Collection System (세라믹 필터 집진기의 유동 해석)

  • Jang, Sung-Cheol;Choi, Dong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • This study aimed to analyze the fluid inside the ceramic filtration dust collection system which was assumed to be a stationary 3-dimensional turbulence. The fluid dynamics data necessary for performance curves were obtained based on the analysis results. The governing equations used to compute the velocity distribution and pressure inside the catalyst converter were expressed with continuity and momentum equations. Furthermore, the ${\kappa}-{\varepsilon}$ turbulence model, already validated by the industry(coal factory, high temperature dust collector) was used for the study. Of a total of three computational models employed, Model-1 served as the basis for CFD analysis which took measurements in increments of 70mm.

Study on Components of Bovine Follicular Fluid Affecting on Sperm Movement (소 정자의 운동성에 영향을 미치는 난포액 성분에 관한 연구)

  • 박영식
    • Journal of Embryo Transfer
    • /
    • v.12 no.2
    • /
    • pp.219-226
    • /
    • 1997
  • Follicular fluid influxed into the oviduct during ovulation may affect movement of sperm for fertilization Thus, in this study, the effect of follicular fluid, obtained from follicles of l0mm in diameter, on number and quality of sperm recovered by swim-up separation was investigated and sperm-movement stimulating components extracted from follicular fluid with methanol and isooctane were separated by gel filtration with Sepadex G-1O, G-25 and G-1OO gels, and were isolated by electrophoresis with SDS-PAGE mini gel. The results obtained were as follows; 1. Diluted follicular fluid stimulated sperm movement. 2. Sperm-movement stimulating factors were in methanol extract. 3. Sperm-movement stimulating effect of methanol extract appeared in fraction I among fractions recovered after gel filtration. And the fraction I contained proteins indicating 4 major bands as about 47, 43, 25 and 14 kilodaldons and 5 minor bands as about 67, 58, 23, 22 and 21 kilodaldons. 4. The fraction I recovered from G-100 gel showed significantly low percentage of motile sperm and had no protein indicating the band of 67 kilodaldons among the minor bands.

  • PDF

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.498-507
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1502-1511
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF

Numerical Visualization of Fluid Flow and Filtration Efficiency in Centrifugal Oil Purifier

  • Jung, Ho-Yun;Choi, Yoon-Hwan;Lee, Yeon-Won;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.84-91
    • /
    • 2010
  • The centrifugal oil purifier is used in ships for purifying the engine lubrication oil. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. The dust particles in the oil are separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are adsorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviours of particles in this centrifugal oil purifier have been investigated numerically and the filtration efficiencies have been evaluated. For the calculations, a commercial code has been used and the SST k-${\omega}$ turbulence model has been adopted. The MRF (Multiple Reference Frame) method has been introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies have been evaluated. It has been verified that the filtration efficiency is increased with the increments of the particle size, the particle density and the rotating speed of the cylindrical chamber.

Effects of Fetal Calf Serum and Porcine Follicular Fluid Fractionated by Gel Filtration on in vitro Maturation of Porcine Follicular Oocytes (Gel Filtration에 의해 분획된 소 태아혈청과 돼지난포액이 돼지난포란의 체외성숙에 미치는 효과)

  • 가학현;정구민;한정호;임경순
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.4
    • /
    • pp.251-258
    • /
    • 1996
  • These studies were carried out to investigate the effect of gonadotropins (GTH), fetal calf serum (FCS), porcine follicular fluid (pFF) and FCS and pFF fractions obtained by the gel filtration on in vitro maturation of porcine follicular fluid. When the oocytes were cultured in TCM-199, the maturation rate was higher in pFF than in FCS in both with or without GTH and in pFF the maturation rate was higher in with GTH than in without GTH. In case of without GTH, pFF increased maturation rates in TCM-199, but not in Whitten's medium (WM). When the oocytes were cultured in WM supplemented with FCS fractions, the maturation rate(51.6%) of oocytes was significantly (P<0.05) higher in fraction B (about 30∼70 kDa) than in control, FCS and other fractions. When oocytes were cultured in WM supplemented with pFF fractions, fractions B (about 30∼70 kDa) and D (about 1∼10 kDa) were significantly (P<0.05) higher than in control, pFF and other fractions. In conclusiion, the addition of gonadotropins into the maturation media was effective for oocyte maturation. The addition of pFF was more effective than addition of FCS for maturation of porcine oocytes in vitro. And fraction B from FCS and fractions B and D from pFF was effective for oocyte maturation.

  • PDF

Optimal Design Study for Development of Washable Faucet Assembly Housing Including Filtration Filter (여과필터를 포함한 세척이 가능한 수도꼭지 어셈블리 하우징 개발을 위한 최적설계 연구)

  • Son, In-Soo;Bae, Sang-Dae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.581-587
    • /
    • 2021
  • In recent years, contamination of drinking water sources has emerged as a serious social problem, such as a large number of impurities in tap water or groundwater or the supply of suitable water due to rust of pipes. Although the government and public institutions are implementing various measures to protect water sources, they cannot improve water quality in a short period of time because of the enormous cost involved. Therefore, in recent years, preference has been given to a device that converts tap water, which is hard water, into soft water by installing a separate water softener at the faucet from which tap water is discharged. However, the existing filtration device has a problem that filtration performance is gradually lowered when impurities accumulate in the filter, requiring continuous filter replacement. In this study, the optimal design of the filter housing was performed to develop a water softener that can be washed when impurities accumulate on the filter inside the water softener connected to the faucet. For optimal design of the filter housing, fluid and fluid-structural interaction analysis were performed on the design pressure to determine the shape and thickness of the housing, and design review was performed through prototype.