• Title/Summary/Keyword: Fluid field

Search Result 2,250, Processing Time 0.029 seconds

The Effect of Suction and Injection on Unsteady Flow of a Dusty Conducting Fluid in Rectangular Channel

  • Attia Hazem Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1148-1157
    • /
    • 2005
  • In the present study, the unsteady Hartmann flow of a dusty viscous incompressible electrically conducting fluid under the influence of an exponentially decreasing pressure gradient is studied without neglecting the ion slip. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below. The fluid is acted upon by an external uniform magnetic field which is applied perpendicular to the plates. An analytical solution for the governing equations of motion is obtained to yield the velocity distributions for both the fluid and dust particles.

Analysis on the lgnition Charac teristics of Pseudospark Discharge Using Hybrid Fluid-Particle(Monte Carlo) Method (혼성 유체-입자(몬테칼로)법을 이용한 유사스파크 방전의 기동 특성 해석)

  • 심재학;주홍진;강형부
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.571-580
    • /
    • 1998
  • The numerical model that can describe the ignition of pseudospark discharge using hybrid fluid-particle(Monte Carlo )method has been developed. This model consists of the fluid expression for transport of electrons and ions and Poisson's equation in the electric field. The fluid equation determines the spatiotemporal dependence of charged particle densities and the ionization source term is computed using the Monte carlo method. This model has been used to study the evolution of a discharge in Argon at 0.5 torr, with an applied voltage if 1kV. The evolution process of the discharge has been divided into four phases along the potential distribution : (1) Townsend discharge, (2) plasma formation, (3) onset of hollow cathode effect, (4) plasma expansion. From the numerical results, the physical mechanisms that lead to the rapid rise in current associated with the onset of pseudospark could be identified.

  • PDF

Fluid-Structure Interaction Analysis for Structure in Viscous Flow (점성 유동장에서 운동하는 구조체의 유탄성 해석)

  • Nho, In-Sik;Shin, Sang-Mook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.168-174
    • /
    • 2008
  • To calculate the fluid-structure interaction(FSI) problem rationally, it should be the basic technology to analyse each domain of fluid and structure accurately. In this paper, a new FSI analysis algorithm was introduced using the 3D solid finite element for structural analysis and CFD code based on the HCIB method for viscous flow analysis. The fluid and structural domain were analysed successively and alternatively in time domain. The structural domain was analysed by the Newmark-b direct time integration scheme using the pressure field calculated by the CFD code. The results for example calculation were compared with other research and it was shown that those coincided each other. So we can conclude that the developed algorithm can be applied to the general FSI problems.

MHD Hartmann flow of a Dusty Fluid with Exponential Decaying Pressure Gradient

  • ATTIA HAZEM A.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1232-1239
    • /
    • 2006
  • In the present study, the unsteady Hartmann flow with heat transfer of a viscous incompressible electrically conducting fluid under the influence of an exponentially decreasing pressure gradient is studied. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is acted upon by an external uniform magnetic field applied perpendicular to the plates. The equations of motion are solved analytically to yield the velocity distributions for both the fluid and dust particles. The energy equations for both the fluid and dust particles including the viscous and Joule dissipation terms, are solved numerically using finite differences to get the temperature distributions.

English Title of The Paper (Times New Roman 12pt) (용융상태 알루미늄 소재의 유동제어 및 재활용 기술)

  • Hong K.D.;Kim K.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1020-1023
    • /
    • 2005
  • The fluid flow and thermal analysis were carried out by using the finite element program, Ansys. In analysis process, a electromagnetic analysis was accomplished. In afterwards, Fluid and thermal analysis was done. Fluid flow and heat could be produced by electromagnetic pump. In other words, A magnetic field which electromagnetic pump generates influences Liquid Material(Al alloy). This paper calculates the fluid flow and temperature distribution according to time. Using material is Al alloy(A356).

  • PDF

Vibration mode control of a smart plate containing electro-rheological fluid (ER유체를 이용한 스마트 평판의 진동모드 제어)

  • 정상봉;박용균;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.451-455
    • /
    • 1997
  • This paper presents vibration mode control of a smart plate containing electro-rheological (ER) fluid between elastic face layers. Following the composition of a silicone oil-based ER fluid, the ER fluid-embedded plate partitioned into four sections is constructed. Then, an extensive modal test is experimentally carried out to identify field-dependent modal parameters such as mode shapes and natural frequencies of the structure with respect to different are subjected to electric fields. The distilled results from the experiment exhibit that the ER fluid can be effectively employed in a continuous fashion to tune modal behaviors of the distributed parameter systems,

  • PDF

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.385-403
    • /
    • 2014
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

On Weakly Z Symmetric Spacetimes

  • De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.761-779
    • /
    • 2018
  • The object of the present paper is to study weakly Z symmetric spacetimes $(WZS)_4$. At first we prove that a weakly Z symmetric spacetime is a quasi-Einstein spacetime and hence a perfect fluid spacetime. Next, we consider conformally flat $(WZS)_4$ spacetimes and prove that such a spacetime is infinitesimally spatially isotropic relative to the unit timelike vector field ${\rho}$. We also study $(WZS)_4$ spacetimes with divergence free conformal curvature tensor. Moreover, we characterize dust fluid and viscous fluid $(WZS)_4$ spacetimes. Finally, we construct an example of a $(WZS)_4$ spacetime.

VIV simulation of riser-conductor systems including nonlinear soil-structure interactions

  • Ye, Maokun;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.241-259
    • /
    • 2019
  • This paper presents a fully three-dimensional numerical approach for analyzing deepwater drilling riser-conductor system vortex-induced vibrations (VIV) including nonlinear soil-structure interactions (SSI). The drilling riser-conductor system is modeled as a tensioned beam with linearly distributed tension and is solved by a fully implicit discretization scheme. The fluid field around the riser-conductor system is obtained by Finite-Analytic Navier-Stokes (FANS) code, which numerically solves the unsteady Navier-Stokes equations. The SSI is considered by modeling the lateral soil resistance force according to nonlinear p-y curves. Overset grid method is adopted to mesh the fluid domain. A partitioned fluid-structure interaction (FSI) method is achieved by communication between the fluid solver and riser motion solver. A riser-conductor system VIV simulation without SSI is firstly presented and served as a benchmark case for the subsequent simulations. Two SSI models based on a nonlinear p-y curve are then applied to the VIV simulations. Also, the effects of two key soil properties on the VIV simulations of riser-conductor systems are studied.

A numerical study on the acoustic characteristics of centrifugal impeller with small added vane (작은 안내 깃이 붙은 원심형 임펠러의 소음 특성에 대한 연구)

  • Jeon, Wan-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.22-29
    • /
    • 2001
  • Centrifugal fans are widely used in industrial practices but the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the easing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan, and to calculate the effects of small vanes that are attached in original impeller - Splitter impeller. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The splitter impeller changes the acoustic characteristics as well as performance. Two-splitter type impeller and splitter impeller which splitter locates in jet region are good for acoustic characteristics.

  • PDF