• 제목/요약/키워드: Fluid field

검색결과 2,243건 처리시간 0.03초

Study on the Preparation Process and Properties of Magnetorheological Fluid Treated by Compounding Surfactants

  • Wu, Xiangfan;Xiao, Xingming;Tian, Zuzhi;Chen, Fei
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.229-234
    • /
    • 2016
  • Aiming to prepare high performance magnetorheological fluid, firstly, oleic acid and sodium dodecyl benzene sulfonate are chosen as surfactants. And then, the mechanical stirring process including stirring time, stirring temperature and stirring speed are optimized by measuring sedimentation ratio and zero-field viscosity. Finally, the properties of prepared magnetorheological fluid are elaborated. The results indicate that the compounding of oleic acid and sodium dodecyl benzene sulfonate can improve the properties of magnetorheological fluid distinctively, and the optimistic compounding content is 4g:4g or 5g:5g. The surfactants adding orders and the second stirring time have little effect on the properties of magnetorheological fluid, while obviously of the first stirring time, temperature and speed. Moreover, the sedimentation ratio of prepared magnetorheological fluid is less than 5.2% in two weeks, the zero-field viscosity is smaller than $0.6Pa{\cdot}s$ at $20^{\circ}C$, and the maximum yield stress is higher than 50 kPa.

Microflow of dilute colloidal suspension in narrow channel of microfluidic-chip under Newtonian fluid slip condition

  • Chun Myung-Suk;Lee Tae Seok;Lee Kangtaek
    • Korea-Australia Rheology Journal
    • /
    • 제17권4호
    • /
    • pp.207-215
    • /
    • 2005
  • We present a finite difference solution for electrokinetic flow in rectangular microchannels encompassing Navier's fluid slip phenomena. The externally applied body force originated from between the nonlinear Poisson-Boltzmann field around the channel wall and the flow-induced electric field is employed in the equation of motion. The basic principle of net current conservation is applied in the ion transport. The effects of the slip length and the long-range repulsion upon the velocity profile are examined in conjunction with the friction factor. It is evident that the fluid slip counteracts the effect by the electric double layer and induces a larger flow rate. Particle streak imaging by fluorescent microscope and the data processing method developed ourselves are applied to straight channel designed to allow for flow visualization of dilute latex colloids underlying the condition of simple fluid. The reliability of the velocity profile determined by the flow imaging is justified by comparing with the finite difference solution. We recognized the behavior of fluid slip in velocity profiles at the hydrophobic surface of polydimethylsiloxane wall, from which the slip length was evaluated for different conditions.

Development of FAMD Code to Calculate the Fluid Added Mass and Damping of Arbitrary Structures Submerged in Confined Viscous Fluid

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.457-466
    • /
    • 2003
  • In this paper, the numerical finite element formulations were derived for the linearized Navier-Stokes' equations with assumptions of two-dimensional incompressible, homogeneous viscous fluid field, and small oscillation and the FAMD (Fluid Added Mass and Damping) code was developed for practical applications calculating the fluid added mass and damping. In formulations, a fluid domain is discretized with C$\^$0/-type quadratic quadrilateral elements containing eight nodes using a mixed interpolation method, i.e., the interpolation function for the velocity variable is approximated by a quadratic function based on all eight nodal points and the interpolation function for the pressure variable is approximated by a linear function based on the four nodal points at vertices. Using the developed code, the various characteristics of the fluid added mass and damping are investigated for the concentric cylindrical shell and the actual hexagon arrays of the liquid metal reactor cores.

Investigation on the heat transfer of MHD nanofluids in channel containing porous medium using lattice Boltzmann method

  • Xiangyang Liu;Jimin Xu;Tianwang Lai ;Maogang He
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.191-201
    • /
    • 2023
  • In order to develop better method to enhance and control the flow and heat transfer inside the radiator of electronic device, the synergistic effect of MHD nanofluids and porous medium on the flow and heat transfer in rectangular opened channel is simulated using Lattice Boltzmann method. Three nanofluids of CuO-water, Al2O3-water and Fe3O4-water are studied to analyze the influence of the type of nanofluid on the synergistic effect. The simulation results show that the porous medium can increase the flow velocity in fluid zone adjacent to the porous medium and enhance the heat transfer on the surface of the channel. Under no magnetic field, when the porosity of porous medium is 0.8, the Nusselt number is 4.46% higher than when the porosity is 0.9. Al2O3-water has the best heat transfer effect among the three nanofluids. At Ф=0.06, Ha=100, θ=90°, ε=0.9, Nu of Al2O3-water is 6.51% larger than that of CuO-water and 5.05% larger than that of Fe3O4-water. Magnetic field enhances seepage in porous medium and inhibits heat transfer in the bottom wall. When Ha=30 and 60, the inhibiting effect is the most significant as the magnetic field angle is 90°. And when Ha=100, the inhibiting effect is the most significant as the magnetic field angle is 120°.

특성함수를 이용한 펌프 제어 밸브의 편심축 결정 (Determination of Eccentric Axis for Pump Control Valve Using the Characteristic Function)

  • 신명섭;이상일;박경진;윤준용
    • 한국유체기계학회 논문집
    • /
    • 제11권3호
    • /
    • pp.43-49
    • /
    • 2008
  • The pump control valve is a butterfly valve that has an eccentric rotating axis. It is not only used as a butterfly valve to control the flow rate or pressure, but also as a check valve to prevent backward flow. A new design method of eccentric rotating axis is proposed to design the valve. The height of the rotating axis is determined through flow field analysis. A general purpose of computational fluid dynamics software system, Fluent is used to simulate the fluid flow. Flow field analysis is performed for various heights of the rotating axis and different opening angles of the valve. A characteristic function is defined for estimating the flow characteristics based on the results of flow field analysis. The characteristic function is defined in order to determine the height of the rotating axis. An optimization problem with a characteristic function is formulated to determine the amount of eccentricity. The height of the Totaling axis of the valve is determined through solving the optimization problem.

수소충전유량 현장교정시스템의 개발 (Development of Hydrogen Flow Field Standard in Hydrogen Refueling Station)

  • 강웅;신진우;이생희;윤병로;백운봉
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.684-691
    • /
    • 2022
  • Hydrogen fuel cell electric vehicles are typically refueled at a wide range of temperatures (-40℃ to 85℃) in the hydrogen refueling station in accordance with the worldwide accepted standard. Currently, there is no traceable method by which to verify and calibrate the hydrogen flowmeters to be used at hydrogen refueling stations except for a water calibration process as a conventional method. KRISS hydrogen field test standard based on the gravimetric principle was developed to verify the measurement accuracy of the mass flowmeter to be used at hydrogen refueling stations for the first time in Korea.

On the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Panakhli, Panakh G.
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.287-316
    • /
    • 2017
  • This paper studies the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall. This study is made by employing the discrete-analytical solution method proposed in the paper by the authors (Akbarov and Panakhli (2015)). It is assumed that in the initial state the fluid flow is caused by the axial movement of the plate and the additional lineally-located time-harmonic forces act on the plate and these forces cause additional flow field in the fluid and a stress-strain state in the plate. The stress-strain state in the plate is described by utilizing the exact equations and relations of the linear elastodynamics. However, the additional fluid flow field is described with linearized Navier-Stokes equations for a compressible viscous fluid. Numerical results related to the influence of the problem parameters on the frequency response of the normal stress acting on the plate fluid interface plane and fluid flow velocity on this plane are presented and discussed. In this discussion, attention is focused on the influence of the initial plate axial moving velocity on these responses. At the same, it is established that as a result of the plate moving a resonance type of phenomenon can take place under forced vibration of the system. Moreover, numerical results regarding the influence of the fluid compressibility on these responses are also presented and discussed.

Analysis of critical fluid velocity and heat transfer in temperature-dependent nanocomposite pipes conveying nanofluid subjected to heat generation, conduction, convection and magnetic field

  • Fakhar, Mohammad Hosein;Fakhar, Ahmad;Tabatabaei, Hamidreza
    • Steel and Composite Structures
    • /
    • 제30권3호
    • /
    • pp.281-292
    • /
    • 2019
  • In this paper, analysis of critical fluid velocity and heat transfer in the nanocomposite pipes conveying nanofluid is presented. The pipe is reinforced by carbon nanotubes (CNTs) and the fluid is mixed by $AL_2O_3$ nanoparticles. The material properties of the nanocomposite pipe and nanofluid are considered temperature-dependent and the structure is subjected to magnetic field. The forces of fluid viscosity and turbulent pressure are obtained using momentum equations of fluid. Based on energy balance, the convection of inner and outer fluids, conduction of pipe and heat generation are considered. For mathematical modeling of the nanocomposite pipes, the first order shear deformation theory (FSDT) and energy method are used. Utilizing the Lagrange method, the coupled pipe-nanofluid motion equations are derived. Applying a semi-analytical method, the motion equations are solved for obtaining the critical fluid velocity and critical Reynolds and Nusselt numbers. The effects of CNTs volume percent, $AL_2O_3$ nanoparticles volume percent, length to radius ratio of the pipe and shell surface roughness were shown on the critical fluid velocity, critical Reynolds and Nusselt numbers. The results are validated with other published work which shows the accuracy of obtained results of this work. Numerical results indicate that for heat generation of $Q=10MW/m^3$, adding 6% $AL_2O_3$ nanoparticles to the fluid increases 20% the critical fluid velocity and 15% the Nusselt number which can be useful for heat exchangers.

계지탕(桂枝湯) 방후주문(方後註文)에 관한 연구(硏究) (A study on post-formula instruction of Kyejitang(桂枝湯))

  • 김강;맹웅재
    • 한국의사학회지
    • /
    • 제23권1호
    • /
    • pp.23-41
    • /
    • 2010
  • Greater yang disease(太陽病) is a syndrome induced by peripheral obstruction. One of them is "wind stroke(中風)" with the obstruction in lymphatic system. The other obstruction appearing on circulatory system is called "cold damage(傷寒)." Kyejitang(桂枝湯) is the formula prescribed for greater yang wind stroke pattern(太陽中風證) which is caused by peripheral lymphatic duct obstruction. Ramulus Cinamoni acts as a vasodilator and Radix Paeoniae relieves the abdominal tension. They make blood move to the internal organ and this can remove the retention of peripheral lymphatic system. Covering the patient with a blanket and getting him/her to have hot and thin rice gruel causes slight Diaphoresis, contributing to relieving the retention of lymphatic system. Disharmony between nutrient and defense(營衛不和) means that pressure becomes different between lymphatic system and vascular system. Kyejitang(桂枝湯) is called releasing muscles formula(解肌劑) because it can resolve such pressure difference. Diaphoresis is not a means to eliminate pathogenic qi(邪氣) from the body. That is the syndrome proving that the body fluid has moved around when disordered fluid distribution is corrected. Therefore, diaphoresis should be induced weakly all the time. If diaphoresis is induced excessively, body fluid will move more than desired and then illness cannot be cured. In Sanghanlun(傷寒論), dispersing drugs aim at addressing the retention in the exterior field, but it actually applies to the entire exterior and interior to make body fluid move. Therefore, diaphoresis does not just act on exterior field, and freeing the stool does not only apply to interior field. Distribution of body fluid changed by pathogenic qi(邪氣) influences the whole body because the human body has a closed circulatory system. Sanghanlun(傷寒論) has included treatments for pathogenic disease. However, its value should not be limited to pathogenic disease. It is because controlling blood flow by sending body fluid to the place a doctor wants is certainly worth using for treatment of non-exogenous disease or chronic illnesses.

The influence of magnetic field on the alignment of steel fiber in fresh cementitious composites

  • Li, Hui;Li, Lu;Li, Lin;Zhou, Jian;Mu, Ru;Xu, Mingfeng
    • Computers and Concrete
    • /
    • 제30권5호
    • /
    • pp.323-337
    • /
    • 2022
  • This paper proposes a numerical model to simulate the rotational behavior of steel fiber in fresh cement-based materials in the presence of a magnetic field. The results indicate that as the aspect ratio of fiber increases, the required minimum magnetic field intensity to make fiber rotate in viscous fluid increases. The optimal magnetic field intensity is 0.03 T for aligning steel fiber in fresh cement-based materials to ensure that the applying time of the magnetic field can be conducted concurrently with the vibrating process to increase the aligning efficiency. The orientation factor of steel fiber in cement mortar can exceed 0.85 after aligning by 0.03 T of the uniform magnetic field. When the initial angle of the fiber to the magnetic field direction is less than 10°, the magnetic field less than 0.03 T cannot make the fiber overcome the yield stress of fluid to rotate. The coarse aggregate in steel fiber-reinforced concrete is detrimental to the rotation and alignment of the steel fiber. But the orientation factor of ASFRC under the 0.03T of the magnetic field can also exceed 0.8, while the orientation factor of SFRC without magnetic field application is around 0.6.