• Title/Summary/Keyword: Fluid dynamics simulator

Search Result 44, Processing Time 0.031 seconds

Design of Simulator for the Excavator (굴삭기 시뮬레이터의 설계)

  • Kim, D.S.;Bae, S.K.;Kim, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.3
    • /
    • pp.14-19
    • /
    • 2006
  • Recently, the cylinder of the excavator is applied in the various environment. So, we need the development of the simulator for the excavator. The simulator has the effects of the decrease of the cost and improvement of the cylinder's performance. In this paper, we design the simulator for the excavator and makes an analysis of the dynamics and structure. The simulator was applied to the excavator's models of 10ton, 20ton and 30ton because we built the data base of a real excavator's cylinder of information in the experiment. And we used the FEM analysis for the comparative study on the characteristics.

  • PDF

A Development of Fire Training Simulator Based on Computational Fluid Dynamics Simulation (전산수치해석 기반 화재훈련 VR 시뮬레이터의 개발)

  • Cha, Moo-Hyun;Lee, Jai-Kyung;Park, Seong-Whan;Choi, Byung-Il
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.271-280
    • /
    • 2009
  • An experience based training system concerning various fire situations which may result many casualties has been required to make rapid decision and improve the responsiveness. Recently, the necessity of virtual reality (VR) based training system which can replace a dangerous full-scale fire training and be easily adopted to the training or evaluation process is increasing. This study constructed tile virtual environment according to pre-defined scenarios, utilized the FDS(Fire Dynamics Simulator), three dimensional computational fire analysis program, to derive numerically simulated data on the propagation of fire. Finally, by visualizing the realistic fire and smoke behavior through virtual reality technique and implementing real-time interaction, we developed a VR-based fire training simulator. Also, in order to ensure the sense for tile real of a virtual world and reaI-time performance at the same time, we proposed appropriate data processing and space search algorithms, demonstrate d the value of proposed method through experiments.

Effects of aspect ratio on laboratory simulation of tornado-like vortices

  • Tang, Zhuo;Zuo, Delong;James, Darryl;Eguch, Yuzuru;Hattori, Yasuo
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.111-121
    • /
    • 2018
  • Experiments were conducted in a large-scale Ward-type tornado simulator to study tornado-like vortices. Both flow velocities and the pressures at the surface beneath the vortices were measured. An interpretation of these measurements enabled an assessment of the mean flow field as well as the mean and fluctuating characteristics of the surface pressure deficit, which is a manifestation of the flow fluctuation aloft. An emphasis was placed on the effect of the aspect ratio of the tornado simulator on the characteristics of the simulated flow and the corresponding surface pressure deficit, especially the evolution of these characteristics due to the transition of the flow from a single-celled vortex to a two-celled vortex with increasing swirl ratio.

Numerical Study on Propylene Vertical Wall Fires (프로필렌 수직벽 화재의 수치적 연구)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.133-137
    • /
    • 2009
  • The Fire Dynamics Simulator (FDS), a computational fluid dynamics model for fire simulation, was applied to propylene vertical wall fires, to confirm its accuracy in simulation of vertical wall fires. The temperature profiles at the center of the burner obtained for mass loss rates per unit area in the range of $7.0{\sim}29.29g/m^2-s$ were compared with those of experiment. Comparisons of the heat flux distributions along the vertical centerline on the wall surface were made with the measurements. It was shown that the computed temperature profiles were in good agreement with the experiment. It was also noted that the peak temperature near the wall was underpredicted, the heat flux was too high compared with the measurements, and hence improvements are required for FDS in simulation of the vertical wall fires.

Numerical Simulation of a Forest Fire Spread (산불 전파의 수치 시뮬레이션)

  • Lee, Myung-Sung;Won, Chan-Shik;Hur, Nahm-Keon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • In the present study, a forest fire spread was simulated with a three-dimensional, fully-transient, physics-based, computer simulation program. Physics-based fire simulation is based on the governing equations of fluid dynamics, combustion and heat transfer. The focus of the present study is to perform parametric study to simulate fire spread through flat and inclined wildland with vegetative fuels like trees or grass. The fire simulation was performed in the range of the wind speeds and degrees of inclination. From the results, the effect of the various parameters of the forest fire on the fire spread behavior was analyzed for the future use of the simulation in the prediction of fire behavior in the complex terrain.

A Basic Study on the Performance CFD simulation of Road Snow-melting system by Ground Source Heat Pump (지열원 히트펌프를 이용한 도로융설시스템의 CFD 성능예측에 관한 기초연구)

  • Choi, Duk-In;Kim, Joong-Hun;Kim, Jin-Ho;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.2
    • /
    • pp.23-28
    • /
    • 2010
  • Fluent ver.6.3 is used as CFD(Computational Fluid Dynamics) simulator to predict the performance of snow-melting system by geothermal pipes energy. As the results of this simulation, it is clearly shown that $50^{\circ}C$ of working fluid in to geothermal evaluated as more effect comparing to $45^{\circ}C$ of working fluid. The Surface temperature is come to $5^{\circ}C$ at 1m/s speed and $50^{\circ}C$ temperature of the working fluid.

Simulation of Heat and Smoke Behavior for Wood and Subway Fires by Fire Dynamics Simulator(FDS) (FDS에 의한 목재 및 지하철 화재의 열 및 연기 거동 시뮬레이션)

  • Sonh, Yun-Suk;Dan, Seung-Kyu;Lee, Bong-Woo;Kwon, Seong-Pil;Shin, Dong-Il;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In this study, to propose the analysis method of heat and smoke behavior of fire using the CFD-based fire simulator FDS, comparison of the simulation results against the experimental results and the sensitivity of the results to the grid sizes have been investigated. For the wood fire, thermal images captured from the experiments were compared against the FDS simulations, and the maximum temperatures agreed in~4.3 % error, showing the applicability of FDS in the interpretation of the fire phenomena. In the aspect of the sensitivity to the grid size for the subway fire, FDS results of smoke temperature, CO concentration and visibility converged and showed no distinct changes for the grid size < $28(L){\times}28(W){\times}14(H)$, guaranteeing that the FDS fire model set in this research could interpret the fire phenomena successfully.

Wind Environment Assessment of Walrjeong Station Using Computational Fluid Dynamics (전산유체역학을 이용한 월정기지 풍환경 평가)

  • Lee, Yong-Jin;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.489-490
    • /
    • 2009
  • We investigated wind environment impact of the building of the KIER Waljeong Station in Jeju Island. From the preliminary qualitative analysis using the VirtualWind simulator, we confirmed that an influence caused by the 11m-tall 30m-aparted building on the 1.5MW wind turbine at Waljeong Station in not negligible. As a next step, VirtualWind simulation and the 100m met-tower measurement at the Waljeong Station is going to be compared to identify a building effect quantitatively.

  • PDF

A Numerical Analysis for Fire Spread Mechanism of Residential Building Fire (주거용 건축물의 화염전파 현상에 대한 수치해석적 검토)

  • Ahn, Chan-Sol;Kim, Heung-Youl;You, Yong-Ho;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • This study is intended to present a computational thermal model for a residential building. As the Performance Based Design is more popular, fire-intensity and fire-load have turned out to be very important factors for building design and can be predicted through some computational work. To predict and estimate the fire properties of a residential fire, we made some numerical models of combustibles and residential building. In a bid to validate the estimate values, computational analysis results from numerical models were compared with real fire tests. For computational analysis, the Fire Dynamics Simulator (FDS) was used with Large Eddy Simulation (LES) model for turbulence. Consequently, fire-intensity was well predicted and flash-over of rooms were successfully estimated.