• Title/Summary/Keyword: Fluid dynamics

Search Result 3,492, Processing Time 0.025 seconds

A study on the acoustic loads prediction of flight vehicle using computational fluid dynamics-empirical hybrid method (하이브리드 방법을 이용한 비행 중 비행체 음향하중 예측에 관한 연구)

  • Park, Seoryong;Kim, Manshik;Kim, Hongil;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • This paper performed the prediction of the acoustic loads applied to the surface of the flight vehicle during flight. Acoustic loads during flight arise from the pressure fluctuations on the surface of body. The conventional method of predicting the acoustic loads in flight uses semi-empirical method derived from theoretical and experimental results. However, there is a limit in obtaining the flow characteristics and the boundary layer parameters of the flight vehicle which are used as the input values of the empirical equation through experiments. Therefore, in this paper, we use the hybrid method which combines the results of CFD (Computational Fluid Dynamics) with semi-empirical methods to predict the acoustic loads acting on flight vehicle during flight. For the flight vehicle with cone-cylinder-flare shape, acoustic loads were estimated for the subsonic, transonic, supersonic, and Max-q (Maximum dynamic pressure) condition flight. For the hybrid method, two kind of boundary layer edge estimation methods based on CFD results are compared and the acoustic loads prediction results were compared according to empirical equations presented by various researchers.

Performance Analysis of Cluster Network Interfaces for Parallel Computing of Computational Fluid Dynamics (전산유체역학 병렬해석을 위한 클러스터 네트웍 장치 성능분석)

  • Lee, Bo Seong;Hong, Jeong U;Lee, Dong Ho;Lee, Sang San
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.37-43
    • /
    • 2003
  • Parallel computing method is widely used in the computational fluid dynamics for efficient numerical analysis. Nowadays, low cost Linux cluster computers substitute for traditional supercomputers with parallel computing shcemes. The performance of nemerical solvers on an Linux cluster computer is highly dependent not on the performance of processors but on the performance of network devices in the cluster system. In this paper, we investigated the effects of the network devices such as Myrinet2000, gigabit ethernet, and fast ethernet on the performance of the cluster system by using some benchmark programs such as Netpipe, LINPACK, NAS NPB, and MPINS2D Navier-Stokes solvers. Finally, upon this investigation, we will suggest the method for building high performance low cost Linux cluster system in the computational fluid dynamics analysis.

An Analytical Study on Evaluation of Opening Performance of Steam Safety Valve for Nuclear Power Plant (원자력 증기용 안전밸브의 개방성능 평가를 위한 해석적 연구)

  • Sohn, Sangho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.5-11
    • /
    • 2014
  • The purpose of this paper is to investigate an analytical approach for opening performance evaluation of the nuclear pressure safety valve based on standard codes such as ASME or KEPIC. It is well-known that safety valve is considered as one of pressure relief valves for protecting a boiler or pressure vessel from exceeding the maximum allowable working pressure. When pressure in a container reaches its set pressure, the safety valve commences discharging the internal fluid by a sudden opening called as popping. Safety valve is usually evaluated by set pressure, full open, blow-down, leakage and flow capacity. The test procedure and technical requirement for performance evaluation is described in international code of ASME code such as BPVC. The opening characteristics of steam safety valve can be analyzed by computational fluid dynamics (CFD) and steam shaft dynamics. First, the flow analysis along opening process is simulated by running the CFD models of the ten types of opening steps from 0 to 100%. As a analysis result, the various CFD outputs of flow pattern, pressure, forces on the disc and mass flow at each simulation step is demonstrated. The lift force is calculated by using the forces applied on disc from static pressure and secondary flow. And, the effect of huddle chamber or control chamber is studied by dynamic analysis based on CFD simulation results such as lift force. As a result, dynamics analysis shows opening features according to the sizes of control chamber.

A Study on the Resistance Performance and Flow Pattern of High Speed Planing Hull using CFD (전산유체계산을 통한 고속 활주선의 저항성능 및 유동분포 해석)

  • Park, Kyurin;Kim, Dong Jin;Kim, Sun Young;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Unmanned Surface Vehicle (USV) is being developed to do maritime survey and maritime surveillance at Korea Research Institute of Ships & Ocean engineering (KRISO). The goal is that USV should be operated at the maximum speed of 45 knots and it should be operated at sea state 4. Therefore the planing hull of USV should be excellent in resistance performance and manoeuvring performance. It is needed to check its performance using Experimental Fluid Dynamics (EFD), Computational Fluid Dynamics (CFD) or analytic method before designing the hull. In this study, resistance performance was analyzed by EFD and CFD. EFD with heave and pitch was performed at high speed towing system in Seoul National University. CFD was performed using SNUFOAM based on openFOAM with dynamic mesh to calculate running attitudes. The results of CFD were compared with EFD results. The results of CFD were resistance, running attitudes and wave height. The flow distribution and pressure distribution were also analyzed. The results of numerical resistance was under estimated than EFD. Even though the results of CFD have a slight limitation, it can be successfully used to estimate the resistance performance of planing hull. In addition it can be used as a supplement for EFD results.

Energy Efficiency Improvement and Field Scale Study of Crematory using Computation Fluid Dynamics (전산유동해석을 통한 화장로의 에너지 효율개선 및 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.95-101
    • /
    • 2019
  • The cremation rate of Korea in 2016 was 82.7% which is four times greater than 20.5% in 1994. As increasing the cremation rate gradually, it cause a shortage of cremation facilities resulting in building more cremation facilities to meet the increasing inquiries on cremation or a large amount of fuels for the longer operation of the crematory. In this study, the crematory system optimizing its thermal efficiency characteristics and also responding to increasing inquiries on cremation was proposed in order for solving such problems, In particular, the heat flow characteristics including a heat transfer coefficient by performing a simulation using computational fluid dynamics (CFD) was investigated. The CFD model was validated with on-site experiments for a cremation facility. As a result of the simulation, the fuel consumption decreased nearly 25% and residence time increased in the main combustor. Also, the improved crematory was constructed with an expanded combustor, heat exchanger, second combustion air system, refractory and insulation material. From on-site experiments, the energy consumption was saved to approximately 54.4%, while the burning time reduced nearly 20 minutes.

A fast reconstruction technique for nonlinear ocean wave simulation (비선형 해양파 수치 모사를 위한 고속 재현 기법)

  • Lee, Sang-Beom;Choi, Young-Myung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • An improvement of computational resources with a large scale cluster service is available to the individual person, which has been limited to the original industry and research institute. Therefore, the application of powerful computational resources to the engineering design has been increased fast. In naval and marine industry, the application of Computational Fluid Dynamics, which requires a huge computational effort, to a design of ship and offshore structure has been increased. Floating bodies such as the ship or offshore structure is exposed to ocean waves, current and wind in the ocean, therefore the precise modelling of those environmental disturbances is important in Computational Fluid Dynamics. Especially, ocean waves has to be nonlinear rather than the linear model based on the superposition due to a nonlinear characteristics of Computational Fluid Dynamics. In the present study, a fast reconstruction technique is suggested and it is validated from a series of simulations by using the Computational Fluid Dynamics.

Study on Flow Deflection of Duct and Raw Coal Separation Screen (덕트 및 원탄 선별망 유동 편향에 관한 연구)

  • Semyeong Lim;Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.28-33
    • /
    • 2023
  • In this study, computational fluid dynamics was used to analyze the flow bias generated as air supplied by a fan passes through ducts, piping, and a coal separation screen. The flow bias of the air flow is mostly caused by the spatial characteristics of the fan volute and duct, and the internal baffle and the coal separation screen at the outlet cause strong pressure losses that dampen the flow bias. ANSYS CFX was used for computational fluid dynamics, and since the baffle and the coal separation screen are shaped like perforated plates with many small holes uniformly distributed, actual modeling for analysis was not possible. Therefore, the Porous Loss Model was applied. The evaluation of the flow bias was analyzed based on the velocity distribution of the Porous Loss Model at the outlet surface of the coal separation screen obtained from the computational fluid dynamics results.

Evaluation of the mixing and Hydrodynamic Behavior in rapid mixing stage on using Computational Fluid Dynamics (전산유체역학를 이용한 급속혼화공정 교반효과 및 유동 평가)

  • Cho, Youngman;Yoo, Soojeon;Yoo, Pyungjoung;Kim, Daeyoung;Hwangbo, Bonghyeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.799-810
    • /
    • 2009
  • With time, the stable management of turbidity is becoming more important in the water treatment process. So optimization of coagulation is important for the improvement of the sedimentation efficiency. we evaluated the mixing and hydrodynamic behavior in the coagulation basin using Computational Fluid Dynamics (CFD). The items for evaluation are a location and the speed of agitator and angle of an injection pipe. The results of the CFD simulation, the efficacy of mixing in the coagulation basin was not affected according to one or two injection pipe and angle of an injection pipe. If there is a agitator near outlet of coagulation basin, the efficacy of mixing don't improve even though the speed of agitator increase. So location of agitator is perfect when it locate center at the inlet stream. The coagulation basin at this study, the proper speed of agitator is form 20rpm to 30rpm.

Application of Computational Fluid Dynamics to Development of Combustion Devices for Liquid-Propellant Rocket Engines (액체추진제 로켓 엔진 연소장치 개발에 있어서의 전산유체역학 응용)

  • Joh, Miok;Kim, Seong-Ku;Han, Sang Hoon;Choi, Hwan Seok
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.150-159
    • /
    • 2014
  • This study provides a brief introduction to application of the computational fluid dynamics to domestic development of combustion devices for liquid-propellant rocket engines. Multi-dimensional flow analysis can provide information on the flow uniformity and pressure loss inside the propellent manifold, from which the design selection can be performed during the conceptual design phase. Multi-disciplinary performance analysis of the thurst chamber can also provide key information on performance-related design issues such as fuel film cooling and thermal barrier coating conditions. Further efforts should be made to develop numerical models to resolve the mixing and combustion characteristics of LOX/kerosene near the injection face plate.

Stent Design Using Computational Fluid Dynamics (전산유체역학을 이용한 스텐트 설계)

  • Kim, Tae-Dong;Barakat, Abdul;Seo, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1042-1048
    • /
    • 2005
  • Numerical investigation has been made on the stent design to minimize the neointimal hyperplasia. Computational fluid dynamics is applied to investigate the flow distributions in the immediate vicinity of the given idealized stent implanted in the blood vessel. Parametric study on the variations of the number of stouts, stent diameters, stent spacings and Reynolds numbers has been conducted using axi-symmetric Navier-Stokes equations. An initial difficulty in the study is to determine the optimal stent design to understand the flow physics of the flow disturbance induced by stent. The size of recirculation zone around stent is depend on the stent diameter, number of stent wire and Reynolds number but is insensitive to the stent wire spacing. It is also found that when the flow is in acceleration, the flow sees a more favorable pressure gradient, and the separation zones are smaller than the steady flow case. When the flow is in deceleration and the flow sees a more adverse pressure gradient so that the separation zones are larger.