• Title/Summary/Keyword: Fluid contamination

Search Result 93, Processing Time 0.022 seconds

A Study on Contamination Sensitivity and Condition Monitoring for a Pump (펌프의 오염 민감도와 성능 감시에 대한 연구)

  • 이재천
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.124-130
    • /
    • 1998
  • A mathematical model describing gear pump flow degradation in the presense of abrasive particles is presented. The model considers the operating parameters as Sommerfeld number, so that contamination sensitivity test results could be conversed to field application to predict contamination service life. A method to estimate the volumetric efficiency and the contamination level of a pump is proposed by measuring the temperature differences in the fluid. Test results show the validity of the theoretical establishments.

  • PDF

A Study of the Device Development for the Contamination Detection in the Delivery Line (유체배관 오염 검출장치 개발에 관한 연구)

  • Jeong, Yi Ha;Kim, Byung Han;Hong, Joo-Pyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.45-49
    • /
    • 2015
  • Process gases with vapor or liquid phase as well as gas phase may experience alteration in itself or be contaminated in the fluid pipe to the process chamber. And thus it result in as particles or defects on the substrates in semiconductor, LCD, LED manufacturing. Purifiers and filters are used for control of contamination. However, none of detection device is available in the delivery line. In this paper, we propose simple device with lighting and sensing in order to predict contamination of the fluid or the tube wall. For some general purpose gases, it showed constant voltage output regardless of the flow rates. But, the smoke and the moisture in the air lowered the figure due to its concentration. Numerical values for several solid and liquid media were obtained. And, the operating temperature tendency was investigated.

Effect of fluid contamination on reverse torque values in implant-abutment connections under oral conditions

  • Mostafavi, Azam Sadat;Memarian, Maryam;Seddigh, Mohammad Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.65-70
    • /
    • 2021
  • Purpose. Implant mechanical complications, including screw loosening, can influence dental implant success. It has been shown that torque values are affected by contamination occurred in implant-abutment (I/A) interface. This study aimed to examine the effects of blood, saliva, fluoride and chlorhexidine contamination on reverse torque values (RTVs) of abutment screws in oral conditions. Materials and Methods. 50 fixtures were mounted into the stainless-steel holders and divided into five groups (n = 10). Except control group (NC), fixture screw holes in other groups were contaminated with chlorhexidine (CG), saliva (SG), blood (BG), or fluoride (FG). Abutment screws were tightened with a digital torque meter. I/A assemblies were subjected to thermocycling and cyclic loading. The mean RTVs were recorded and data were analyzed with one-way ANOVA and Tukey test. Results. Except for specimens in SG (20.56 ± 1.33), other specimens in BG (21.11 ± 1.54), CG (22.89 ± 1.1) and FG (24.00 ± 1.12) displayed significantly higher RTVs compared to NC (19.00 ± 1.87). The highest RTVs were detected in CG and FG. Conclusion. The obtained data robustly suggest that RTVs were significantly affected by fluid contaminations. Specimens in FG and CG displayed the highest RTVs. Therefore, clinicians should have enough knowledge about probable contaminations in I/A interface in order to manage them during clinical procedure and to inform patients about using oral care products.

A Study on the Effect of Soil Wineral and Component of the Pore Fluid to the Electrical Resistivity (흙의 구성광물과 간극수의 성분이 비저항값에 미치는 영향에 관한 연구)

  • Yoon, Chun-Kyeong;Yu, Chan;Yoon, Kil-Lim
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 1998
  • The environmental problem of the rural area has been accelerated in soil as well as water. Soil contamination is usually caused by improper operation of landfills, abandoned mine fields, accidental spills, and illegal dumpings. Once soil contamination is initiated, pollutants migrate and may cause groundwater contamination which takes much effort for remediation. Early detection, therefore, is important to prevent further contamination. Electrical resistivity method was used to detect soil contamination, but it was not effective to the heterogeneous condition. Static cone penetrometer test (CPT) has been used widely to investigate geotechnical properties of the underground. In this study, electrical resistivity method and CPT are combined to improve the applicability of it. The pilot test was performed to examine the variation of electrical resistivity with different soil minerals and pore fluid characteristics. Soil samples used were poorly graded sand, silty sandy soil, and weathered granite soil. For all the cases, electrical resistivity decreased with increasing of moisture content. Soil mineral also affected the electrical resistivity significantly. Above all, leachate addition in the pore fluid was very sensitive and caused decreasing of electrical resistivity markedly. It implies that electrical resistivity method can be applied to investigate pollutant plume effectively. This is specially sure when the sensors contact the contaminated soils directly. The CPT method involves cone penetration to the ground, therefore, underground contamination around the cone could be investigated effectively even for heterogeneous condition as it penetrates if electrical resistivity sensors are attached on the cone.

  • PDF

A study of the Optical Characteristics for Contaminated Brake Fluid, DOT-3 (DOT-3 브레이크액에서 오염에 따른 광학적 특성 연구)

  • Ji, In-Geun;Kim, Yeo-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.354-358
    • /
    • 2015
  • The results of between resistance and optical transparency measurement in DOT-3 brake fluid contaminated moisture and particles generated from fraction of brake system was compared. Conventional resistance measurement method was known to be effaced by it's hygroscopic characteristics. However, the particle is a significant element of the contamination sources. Proposed optical transparency measurement is linear and effective than that of contamination in brake fluid.

The AS4059 Hydraulic System Cleanliness Classification System: Replacement of NAS1638

  • Day, Mik;Hong, Jeong-Hee
    • Journal of Drive and Control
    • /
    • v.9 no.2
    • /
    • pp.39-45
    • /
    • 2012
  • The NAS 1638 cleanliness classification system was originally developed in 1966 by the US Aircraft Industries of America to both simplify reporting of particle count data and to control the introduction of dirt during the assembly of aircraft fluid systems. The numbers of particles at stated sizes are represented by broad bands where the interval was generally a doubling of contamination. A number of systems have been introduced since this to suit differing requirements. NAS 1638 and AS4059 are used in other industrial sectors such as the Off-shore & Sub-Sea and the Primary Metal Industries. The changes to ISO contamination measurement standards controlled by ISO/TC131/SC6 in 1999 meant that a revision of most of these classification systems was necessary. The body responsible for NAS 1638 decided to withdraw it for new installations and replace it with an update of an existing standard, SAE AS 4059. This paper details the philosophy behind the contamination coding systems, the reasons for the changes to the ISO contamination standards and explains the workings of AS 4059, the replacement for NAS 1638. It goes on to detail the latest changes to this standard.

Numerical evaluation of risk rates for contamination sources in a minienvironment (클린룸 국소환경에서 오염원의 위험율에 대한 수치해석적 평가)

  • Noh, Kwang-Chul
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.181-189
    • /
    • 2018
  • In this study, the risk rates of different contamination sources of the contaminant in a minienvironment were analyzed through Computational Fluid Dynamics (CFD) simulation. The airflow pattern characteristics can only predict the qualitative variation of contaminant concentration, but cannot evaluate the quantitative variations in the risk rate of sources. From the results, the ambient contamination sources mainly affect wafers in the Front Opening Unified Pod (FOUP), whereas the internal contamination sources mainly affect wafers laid on the robot arm in the minienvironment. And the purging plenum system is very useful in protecting the wafers in the FOUP from contaminants transferred from the Fan Filter Unit (FFU). However, this system is unable to protect the wafers on the robot arm from internal contaminants and the wafers in the FOUP from sources of the interface between the FOUP and the minienvironment.

The Study of FAA's certification policy for approving the ground use of deicing/anti-icing fluids on airplane (항공기용 결빙방지액의 지상 사용승인을 위한 FAA의 최근 인증정책 연구)

  • Kim, You gwang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.51-57
    • /
    • 2013
  • This study describes the Federal Aviation Administration(FAA) certification policy for approving the use of Type II, III, and IV deicing/anti-icing fluids on small category airplanes. These fluids can be characterized as non-Newtonian, pseudo-plastic fluids, also known as "thickened" fluids. Deicing fluids are used before takeoff to remove frost or ice contamination, while anti-icing fluids are used before takeoff to prevent frost or ice contamination from occurring for a period of time(referred to as "holdover time") after application. Thickened deicing/anti-icing fluids can affect airplane performance and handling characteristics and their residue may cause stiff or frozen flight controls. This study also describes an approval process that may be used by type certificate holders and applicants for a type certificate under parts 23 to support operational use of these fluids on their airplanes.

Energy Efficiency & Sustainability - the Cleanliness Management Role of Components and System in Automotive and Hydraulics

  • Day, Mik;Hong, Jeong-Hee
    • Journal of Drive and Control
    • /
    • v.9 no.2
    • /
    • pp.46-53
    • /
    • 2012
  • This paper explains how eliminating contamination from the manufacturing processes will lead to better product quality and hence the need for reworking, a trouble free commissioning period and greatly improved production efficiency. All of these will reduce costs and energy usage. It will also ensure that the product is delivered to the customer in a condition that will ensure improved reliability and longer life, again reducing both energy and other operating costs. Correctly designing the contamination control measures will achieve and maintain the level of fluid cleanliness that is required by the end user. The filter is critical to cleanliness management and should be selected with the same degree of thought and consideration as for other major components. This paper explains the role that Cleanliness Management plays in the reducing the carbon footprint of systems and processes by making them perform more efficiently for longer periods. It also examines two differing ways of selecting filters to incorporate the features of newer designs, and shows how significant savings in the costs of ownership can be achieved using these approaches.

Investigation of influence of linear diffuser in the ventilation of operating rooms

  • Keshtkar, Mohammad Mehdi;Nafteh, Maryam
    • Advances in Energy Research
    • /
    • v.4 no.3
    • /
    • pp.239-253
    • /
    • 2016
  • Air quality in hospitals has always concerned hospitals' health officials due to its dangerous particles and gases. Because of the importance of air conditioning in the operating room, a system must be embedded in operating rooms to direct the contaminated air outside, and inject fresh filtered air from outside back into the room. In this study, laminar flow air conditioning system is implemented in the operating room by slot linear diffusers and with the help of air curtain. For this, stimulation Computational Fluid Dynamic (CFD) was used due to its efficiency. The aim of the present study was to find a proper solution to overcome the unfavorable factors, namely, contamination, humidity, and also temperature, velocity and pressure inside the room. These factors were implemented with different values and then stimulated through FLUENT software program. Results showed that the aforementioned factors can be overcome using air curtain and slot linear diffusers.