• Title/Summary/Keyword: Fluid Power Systems

Search Result 600, Processing Time 0.026 seconds

Visualization of Flow inside a Regenerative Turbomachinery

  • Yang, Hyeonmo;Lee, Kyoung-Yong;Choi, Youngseok;Jeong, Kyungseok
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.80-85
    • /
    • 2014
  • In this study, we visualized the internal flow of a regenerative turbomachinery using the direct injection tracer method. For visualization, the working fluid was water and the tracer was oil colors (marbling colors). Droplets were injected at the inlet of the machinery and the streak were recorded using a high-speed camera with high-power light sources. While circulating inside the groove, the droplets were translated by the rotational motion of the impeller. When the droplets flow out of the impeller groove, relative to the impeller, they moved more slowly. And the droplets repeatedly reentered into the groove and circulated again. Then the droplets either flowed to the outlet or to the stripper. As a result, this experiment has confirmed the internal circulating flow of a regenerative turbomachinery.

Development of executive system in power plant simulator (발전 플랜트 설계용 시뮬레이터에서 Executive system의 개발)

  • 예재만;이동수;권상혁;노태정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.488-491
    • /
    • 1997
  • The PMGS(Plant Model Generating System) was developed based on modular modeling method and fluid network calculation concept. Fluid network calculation is used as a method of real-time computation of fluid network, and the module which has a topology with node and branch is defined to take advantages of modular modeling. Also, the database which have a shared memory as an instance is designed to manage simulation data in real-time. The applicability of the PMGS was examined implementing the HRSG(Heat Recovery Steam Generator) control logic on DCS.

  • PDF

A Method for Measuring the Frequency Series Wave Speed in Hydraulic Hose (유압 호스에서의 주파수 계열 음속 계측법 개발)

  • Kang, M.K.;Lee, I.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.2
    • /
    • pp.21-26
    • /
    • 2006
  • With the increasing concerns on noise and vibration in hydraulic fluid power systems, it is important to find better way to reduce noise and vibration. In this study, the authors survey former researches on hose(viscoelastic tube) modeling in advance. And a summary of several existing methods for measuring the speed of sound in the fluid in pipes is presented. Their basic principles, advantages and limitations are compared. And The authors suggest a far simple identification procedure to obtain wave speed in hose by just using an experimental pressure data for the object tube with hose. In the new procedure, flow in hose is basically modeled by transfer matrix method, and wave speed in hose is obtained as data in frequency series. The wave speed in hose as data in frequency series will be used to compute the pressure pulsation attenuation in hydraulic pipe systems. The computed results are compared with the experimental ones, and the validity of the new procedure to obtain wave speed in hose is confirmed

  • PDF

Control Performance for Semi-active Mount Featuring Magneto-Rheological Fluid (반능동형 MR유체 마운트의 성능제어)

  • Kim, O.S.;Park, W.C.;Lee, H.C.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.53-58
    • /
    • 2004
  • In this paper, the semi active mount featuring Magneto rheological fluid(MR Fluid) is proposed. MR fluid is suspension of micro sized magnetizable particles in a fluid medium, and its apparent viscosity can be varied by the applied strength of magnetic field. When the controllable MR fluid is applied to mechanical devices, the devices provide simple, rapid response interfaces between electronic controls and mechanical systems. The MR fluid is applied in the conventional fluid mount for improving its performance of the mount's isolation effect. A appropriate size of the MR mount is designed and manufactured on the basis of Bingham model of MR fluid. In addition, the field dependent damping forces of MR mount are evaluated with respect to the input frequency variation.

  • PDF

Performance Comparison of Two Wind Turbine Generator Systems Having Two Types of Control Methods

  • Saito, Sumio;Sekizuka, Satoshi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.92-101
    • /
    • 2009
  • The purpose of this paper is to gain a greater understanding of the performance of practical wind turbine generating systems with differing output power controllers and controlling means for wind turbine speed. Subjected wind turbines, both equipped with an asynchronous power generator, are located at two sites and are defined as wind turbine A and wind turbine B in this study, respectively. Their performance differences are examined by measuring wind speed and electric parameters. The study suggests that both wind turbines have a clear linkage between current and output power fluctuations. Comparison of the fluctuations to wind speed fluctuation, although they are triggered primarily by wind speed fluctuation, clearly indicates the specific behaviors inherent to the respective turbine control mechanisms.

Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model (분포정수계 유압관로 모델의 동특성 해석)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

Effective modular assembly line control system

  • Eom, Eu-Gan;Kim, Dong-Shin;Ahn, In-Seok;Park, Jong-Oh;Kim, Young-Tae;Kim, Sung-Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.293-297
    • /
    • 1993
  • In this paper, a new design method for Assembly Line Control System(ALCS) is presented. This system consists of five independent modules having their own specific functions such as production management, facility management material management, quality management, and remote control. To implement the ALCS, we propose design of the common data management module(CDMM). This module has the roles of integrating the above five modules and of communicating the common data between them. Using this method, we realize an information management method in the view of CIM. In addition, we standardize the inter-communication of common data between machines having different interface protocols.

  • PDF