• Title/Summary/Keyword: Fluid Mixing Analysis

Search Result 197, Processing Time 0.023 seconds

Analysis and Design of Ultrasonic Micromixer (초음파 미세혼합기의 해석 및 설계)

  • Kim, Duck-Jong;Heo, Pil-Woo;Park, Sang-Jin;Kim, Jae-Yun;Yoon, Eui-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.101-106
    • /
    • 2003
  • In this work, mixing phenomena in the mixing chamber of a ultrasonic micromixer are analyzed through an analytical approach. A simplified 2-dimensional model for the ultrasonic micromixer is presented. Analytical solutions for fluid flow induced by ultrasonic waves are obtained through successive approximations method. From simulation results on thermal diffusion in the mixing chamber, effects of relative location, size, and vibration frequency of a piezoelectric material and aspect ratio of the mixing chamber on mixing performance of the ultrasonic micromixer are investigated. Finally, design guidelines for the ultrasonic micromixer are suggested based on the parametric study.

  • PDF

CFD Analysis on the Effect of the Nozzle Arrays and Spray Types in the Hydrogen Peroxide Mixing Quencher to Improve the Mixing Efficiency (과산화수소 혼합냉각기 내의 노즐배치 및 가스분사 방식 변화에 따른 혼합율 개선에 대한 전산해석적 연구)

  • Koo, Seongmo;Chang, Hyuksang
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.42-53
    • /
    • 2017
  • Numerical analysis was done to evaluate the fluid distribution inside of the mixing quencher to increase the reaction efficiency of the aqueous hydrogen peroxide solution in the scrubbing column which is used for simultaneous desulfurization and denitrification. Effective injection of the aqueous hydrogen peroxide ($H_2O_2$) solution in the mixing quencher has major effects for improving the reaction efficiency in the scrubbing column by enhancing the mixing of the aqueous $H_2O_2$ solution with the exhaust gas. The current study is to optimize the array of nozzles and the spray angles of the aqueous $H_2O_2$ solution in the mixing quencher by using the computational method. Main concerns of the analysis are how to enhance the uniformity of the $H_2O_2$ concentration distribution in the internal flow. Numerical analysis was done to check the distribution of the internal flow in the mixing quencher in terms of RMS values of the $H_2O_2$ concentration at the end of quencher. The concentration distribution of $H_2O_2$ at the end of is evaluated with respect to the different array of the nozzle pipes and the nozzle tip angles, and we also analyzed the turbulence formation and fluid mixing in the zone. The effect of the spray angle was evaluated with respect to the mixing efficiency in different flow directions. The optimized mixing quencher had the nozzle array at location of 0.3 m from the inlet duct surface and the spray angle is $15^{\circ}$ with the co-current flow. The RMS value of the $H_2O_2$ concentration at the end of the mixing quencher was 12.4%.

Numerical Flow Analysis of a Partial Admission Turbine Using a Frozen Rotor Method (프로즌 로터 기법을 이용한 부분흡입형 터빈 수치해석)

  • Noh, Jun-Gu;Jeong, Eun-Hwan;Lee, Eui-Seok;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.15-20
    • /
    • 2004
  • Numerical analysis of the partial admission turbine in the KARI turbopump has been performed. Flow field of the partial admission turbine is intrinsically unsteady and three dimensional. To avoid heavy computational efforts, the frozen rotor method is adopted in computation and compared with the mixing plane approach. The frozen rotor method can represent the variation of a flow field along the circumferential direction of rotor blades, which have the different relative positions to the nozzle with one another. It also illustrates the wake loss mechanism starting from the lip of a nozzle, which is not captured in the mixing plane method. The frozen rotor method has proven to be an efficient tool for the design of a partial admission turbine.

Analysis of the flow distribution and mixing characteristics in the reactor pressure vessel

  • Tong, L.L.;Hou, L.Q.;Cao, X.W.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • The analysis of the fluid flow characteristics in reactor pressure vessel is an important part of the hydraulic design of nuclear power plant, which is related to the structure design of reactor internals, the flow distribution at core inlet and the safety of nuclear power plant. The flow distribution and mixing characteristics in the pressurized reactor vessel for the 1000MWe advanced pressurized water reactor is analyzed by using Computational Fluid Dynamics (CFD) method in this study. The geometry model of the full-scaled reactor vessel is built, which includes the cold and hot legs, downcomer, lower plenum, core, upper plenum, top plenum, and is verified with some parameters in DCD. Under normal condition, it is found that the flow skirt, core plate holes and outlet pipe cause pressure loss. The maximum and minimum flow coefficient is 1.028 and 0.961 respectively, and the standard deviation is 0.019. Compared with other reactor type, it shows relatively uniform of the flow distribution at the core inlet. The coolant mixing coefficient is investigated with adding additional variables, showing that mass transfer of coolant occurs near the interface. The coolant mainly distributes in the 90° area of the corresponding core inlet, and mixes at the interface with the coolant from the adjacent cold leg. 0.1% of corresponding coolant is still distributed at the inlet of the outer-ring components, indicating wide range of mixing coefficient distribution.

Numerical study of Particle Motion in a Developing Mixing Layer using Large-eddy Simulation (LES를 이용한 발전하는 혼합층에서의 입자 운동에 관한 수치 해석 연구)

  • Kim, Tae-Jin;Seo, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.94-99
    • /
    • 2001
  • The numerical simulation of the particle dispersion in the vortical flows provides insight into the mechanism of particle-fluid interaction. The simulation results show that the mixing layers are characterized by the large-scale vortical structures undergoing pairing process. The particle dispersion is strongly influenced by the large-scale structures and the particle sizes. The analysis shows that the mixing layers grows like a step-function.

  • PDF

On Micro-Channel Flow and Mixing: A Review (마이크로-채널 유동과 혼합 : 재검토)

  • Jayaraj, Simon;Suh, Yong-Kweon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.301-304
    • /
    • 2006
  • This paper presents a review of the important recent literature available in the area of micro-channel flow analysis and mixing. The topics covered include the physics of flows in micro-channels and integrated simulation of micro-channel flows. Also the flow control models and electro-kinetically driven micro-channel flows are explained. A comparison of various mixing principles in micro-channels are provided in sufficient detail.

  • PDF

CFD Analysis for Thermal Mixing in a Subcooled Water during Steam Jet Discharge (증기제트 방출시 과냉각수조 내의 열혼합 현상 CFD 해석)

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.513-514
    • /
    • 2006
  • A CFD analysis for a thermal mixing experiment during steam jet discharge was performed to develop the analysis methodology for the thermal mixing between steam and subcooled water and to find the optimized numerical method. In the CFD analysis, the steam condensation phenomena by a direct contact was modelled by the so-called condensation region model. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. However, the commercial CFD code of CFX4.4 together with the condensation region model can simulate the thermal mixing behaviour reasonably well when a sufficient number of mesh distribution and a proper numerical method are adopted

  • PDF

A Numerical Analysis on Mixing Performance for Various Types of Turbine Impeller in a Stirred Vessel (교반기 내 터빈 임펠러 형태에 따른 교반성능에 대한 수치해석적 연구)

  • Choi, Younguk;Choi, Jongrak;Kim, Daejoong;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • In the present study, a numerical simulation to analyze mixing performance inside an industrial mixer was investigated for various geometry of turbine impellers. Various pitching angles and various types of turbine blades were considered in the simulation. In order to model the rotation of impeller, the Multiple Reference Frames (MRF) technique was used. For evaluation of the effect of various shapes on the mixing performance, dimensionless coefficient such as flow coefficient, circulation coefficient, power coefficient, pumping effectiveness and circulation effectiveness were used. From the results, the effect of pitching angle of a pitched turbine impeller was to give best pumping effectiveness around $30^{\circ}$ pitching angle, whereas best circulation effectiveness around $65^{\circ}$ pitching angle. Dual pitched turbine impeller showed best performance in both pumping effectiveness and circulation effectiveness among impeller types considered in the present study.

Modeling of Nozzle Flow Inside a Y-JET Twin-Fluid Atomizer (Y-JET 2-유체 분무노즐 내부유동의 모델링)

  • In, Wang-Kee;Lee, Sang-Yong;Song, Si-Hong
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1841-1850
    • /
    • 1993
  • A simplified one-dimensional analysis has been performed to predict the local pressure distributions in Y-Jet twin-fluid atomizers. Fluid compressibility was considered both in the gas(air) and two-phase(mixing) ports. The annular-mist flow model was adopted to analyze the flow in the mixing port. A series of experiments also has been performed; the results show that the air flow rate increases and the liquid flow rate decreases with the increase of the air injection pressure and/or with the decrease of the liquid injection pressure. From the measured injection pressures and flow rates, the appropriate constants for the correlations of the pressure loss coefficients and the rate of drop entrainment were decided. The local pressures inside the nozzle by prediction reasonably agree with those by the experiments.

Asymmetric Thermal-Mixing Analysis due to Partial Loop Stagnation during Design Basis Accident (원전 설계기준 사고시 냉각재계통 부분정체로 인한 비대칭 열유동 혼합해석)

  • Hwang K. M.;Jin T E.;Kim K. H.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.51-54
    • /
    • 2002
  • When a cold HPSI (High Pressure Safety Injection) fluid associated with an design basis accident, such as LOCA (Loss of Coolant Accident), enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters a reactor pressure vessel downcomer, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. Previous thermal-mixing analyses have assumed that the thermal stratification phenomena generated in stagnated loop of a partially stagnated coolant loop are neutralized in the vessel downcomer by strong flow from unstagnated loop. On the basis of these reasons, this paper presents the thermal-mixing analysis results in order to identify the fact that the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is affected by the strong flow of the unstagnated loop.

  • PDF