• Title/Summary/Keyword: Fluid Grid

Search Result 510, Processing Time 0.022 seconds

Flow-induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Park, Oung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.937-948
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

Flow-Induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파 효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Kim, Dong-Hyun;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.793-802
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

  • PDF

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.

Octree Generation and Clipping Algorithm using Section Curves for Three Dimensional Cartesian Grid Generation (삼차원 직교 격자 생성을 위한 단면 커브를 이용한 옥트리 생성과 셀 절단 알고리듬)

  • Kim, Dong-Hun;Shin, Ha-Yong;Park, Se-Youn;Yi, Il-Lang;Kwon, Jang-Hyuk;Kwon, Oh-Joon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.450-458
    • /
    • 2008
  • Recently, Cartesian grid approach has been popular to generate grid meshes for complex geometries in CFD (Computational Fluid Dynamics) because it is based on the non-body-fitted technique. This paper presents a method of an octree generation and boundary cell clipping using section curves for fast octree generation and elimination of redundant intersections between boundary cells and triangles from 3D triangular mesh. The proposed octree generation method uses 2D Scan-Converting line algorithm, and the clipping is done by parameterization of vertices from section curves. Experimental results provide octree generation time as well as Cut-cell clipping time of several models. The result shows that the proposed octree generation is fast and has linear relationship between grid generation time and the number of cut-cells.

DEVELOPMENT OF CFD PROGRAM BASED ON A UNSTRUCTURED POLYHEDRAL GRID AND ITS APPLICATION TO FLOW AROUND A OSCILLATING CIRCULAR CYLINDER (비정렬 다면체 격자계 기반 유동 해석 프로그램의 개발 및 진동하는 실린더 주변 유동에의 적용)

  • Lee, Sang-Hyuk;Kang, Seong-Won;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.483-487
    • /
    • 2011
  • In the present study, a CFD program based on a finite volume method was developed by using an unstructured polyhedral grid system for the accurate simulation with the complex geometry of computational domain. To simulate the transient flow induced by the moving solid object, the program used a fractional step method and a ALE (Algebric Lagrangian-Eulerian) method. The grid deformation for the moving of solid object were performed with a spring analogy based on the center coordinate of each computational grid. To verify the present program with these methodologies, the numerical results of the flow around the fixed and oscillating circular cylinder were compared with the previous numerical results.

  • PDF

APPLICATION OF MOVING LEAST SQUARE METHOD IN CHIMERA GRID METHOD (중첩격자에 대한 이동최소자승법 적용 연구)

  • Lee, K.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.17-22
    • /
    • 2007
  • Chimera grid Method is widely used in Computational Fluid Dynamics due to its simplicity in constructing grid system over complex bodies. Especially, Chimera grid method is suitable for unsteady flow computations with bodies in relative motions. However, interpolation procedure for ensuring continuity of solution over overlapped region fails when so-call orphan cells are present. We have adopted MLS(Moving Least Squares) method to replace commonly used linear interpolations in order to alleviate the difficulty associated with orphan cells. MSL is one of interpolation methods used in mesh-less methods. A number of examples with MLS are presented to show the validity and the accuracy of the method.

  • PDF

Numerical Simulation of Cascade Flows with Rotor-Stator Interaction Using the Multiblocked Grid (중첩 격자계를 이용한 동익과 정익의 상호작용이 있는 익렬 유동해석)

  • Jung, Y. R.;Park, W. G.;Lee, S. W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.163-169
    • /
    • 1999
  • The numerical procedure has been developed for simulating incompressible viscous flow around a turbine stage with rotor-stator interaction. This study solves 2-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system. The Marker-and-Cell concept is applied to efficiently solve continuity equation. To impose an accurate boundary condition, O-H multiblocked grid system is generated. O-type grid and H-type grid is generated near and outer rotor-stator The cubic-spline interpolation is applied to handle a relative motion of a rotor to the stator. Turbulent flows have been modeled by the Baldwin- Lomax turbulent model. To validate present procedure, the time averaged pressure coefficients around the rotor and stator are compared with experiment and a good agreement obtained.

  • PDF

A Basic Study of Thermal-Fluid Flow Analysis Using Grid Computing (그리드 컴퓨팅을 이용한 열유동 해석 기법에 관한 기초 연구)

  • Hong, Seung-Do;Ha, Yeong-Man;Cho, Kum-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.604-611
    • /
    • 2004
  • Simulation of three-dimensional turbulent flow with LES and DNS lakes much time and expense with currently available computing resources and requires big computing resources especially for high Reynolds number. The emerging alternative to provide the required computing power and working environment is the Grid computing technology. We developed the CFD code which carries out the parallel computing under the Grid environment. We constructed the Grid environment by connecting different PC-cluster systems located at two different institutes of Pusan National University in Busan and KISTI in Daejeon. The specification of PC-cluster located at two different institutes is not uniform. We run our parallelized computer code under the Grid environment and compared its performance with that obtained using the homogeneous computing environment. When we run our code under the Grid environment, the communication time between different computer nodes takes much larger time than the real computation time. Thus the Grid computing requires the highly fast network speed.

Evaluation of a Grid System for Numerical Analysis of a Small Savonius Wind Turbine (사보니우스 소형풍력터빈 수치해석용 격자시스템 평가)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JEON, SEOK-YUN;YOON, JOON-YONG;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.547-553
    • /
    • 2016
  • This paper presents the effect of a grid system on the performance of a small Savonius wind turbine installed side-by-side. Turbine performance is compared using three different grid systems; tetrahedral grid having a concentrated circular grid around turbine rotors, the tetrahedral grid having a concentrated rectangular grid around turbine rotors and the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid. The commercial code, SC/Tetra has been used to solve the three-dimensional unsteady Reynolds-averaged Navier-Stokes analysis in the present study. The Savonius turbine rotor has a rotational diameter of 0.226m and an aspect ratio of 1.0. The distance between neighboring rotor tips keeps the same length of the rotor diameter. The variations of pressure and power coefficient are compared with respect to blade rotational angles and rotating frequencies of the turbine blade. Throughout the comparisons of three grid systems, it is noted that the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid has a stable performance compared to the other ones.

Design and Implementation of a Grid System META for Executing CFD Analysis Programs on Distributed Environment (분산 환경에서 CFD 분석 프로그램 수행을 위한 그리드 시스템 META 설계 및 구현)

  • Kang, Kyung-Woo;Woo, Gyun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.6 s.103
    • /
    • pp.533-540
    • /
    • 2006
  • This paper describes the design and implementation of a grid system META (Metacomputing Environment using Test-run of Application) which facilitates the execution of a CFD (Computational Fluid Dynamics) analysis program on distributed environment. The grid system META allows the CFD program developers can access the computing resources distributed over the network just like one computer system. The research issues involved in the grid computing include fault-tolerance, computing resource selection, and user-interface design. In this paper, we exploits an automatic resource selection scheme for executing the parallel SPMD (Single Program Multiple Data) application written in MPI (Message Passing Interface). The proposed resource selection scheme is informed from the network latency time and the elapsed time of the kernel loop attained from test-run. The network latency time highly influences the executional performance when a parallel program is distributed and executed over several systems. The elapsed time of the kernel loop can be used as an estimator of the whole execution time of the CFD Program due to a common characteristic of CFD programs. The kernel loop consumes over 90% of the whole execution time of a CFD program.