• Title/Summary/Keyword: Fluid Forming

Search Result 185, Processing Time 0.024 seconds

Vibration analysis of characteristics and valveless Type Piezoelectric micro-pump (VALVELSS 압전펌프 진동 해석 및 특성)

  • Lim, Jong-Nam;Oh, Jin-Heon;Lim, Kee-Joe;Kim, Hyun-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.185-185
    • /
    • 2009
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. Using the flexural vibration mode of PZT bar, a piezopump is successfully made. The PZT bar is polarized with thickness direction. The proposed structure for the piezo-pump consists of an input and an output port, piezoelectric ceramic actuator, actuator support, diaphragm. The traveling flexural wave along the bar is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. Fluid is drawn into a forming chamber, eventually the forming chamber closes trapping the fluid therein. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump the highest pressure level of 83.4kHz.

  • PDF

Identification of Proteins in Human Follicular Fluid by Proteomic Profiling

  • Sim, Young-Jin;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.3
    • /
    • pp.253-259
    • /
    • 2008
  • Human follicular fluid (HFF) is the in vivo microenvironment for oocyte maturation and includes a variety of proteins that could be involved in oocyte development and fertilization. We therefore used a proteomic approach to identify new HFF proteins. HFF from mature human follicles was obtained from five women following oocyte collection for in vitro fertilization (IVF). Ethanol-precipitated HFF run on two-dimensional gel electrophoresis (2DE) produced approximately 250 Coomassie brilliant blue-stained spots, 64 of which were identified using matrix-assisted laser desorption/ionization-mass spectrometry (MALDIMS). In this study, several proteins including complement factor H, inter-${\alpha}$ (globulin) inhibitor H4, inter-${\alpha}$-trypsin inhibitor heavy chain H4 precursor, human zinc-${\alpha}$-2-glycoprotein chain B, PRO2619, PRO02044, and complex-forming glycoprotein HC were new proteins that have not been previously reported in HFF using proteomic methods. Additionally, we identified alloalbumin venezia for the first time from trichloroacetic acid (TCA)-precipitated HFF. These HFF proteins could serve as new biomarkers for important human reproductive processes.

A study of a new interfacial instability between two vertical fluid layers of different densities (수직평판 사이를 흐르는 두 점성유체의 밀도차에 의한 계면의 새로운 불안정성 연구)

  • Lee, Cheol-U;Ju, Sang-U;Lee, Sang-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3949-3959
    • /
    • 1996
  • A new interfacial instability between two vertical fluid layers of different densities is studied. The two layers are flowing between two parallel vertical plates vertically upward or downward, forming counter- or concurrent flows. In order to extend the study to highly-nonlinear regime in future studies, a nonlinear interface evolution equation is derived, and the stability analysis is performed based on the evolution equation. Among the parameters studies are the ratios of the fluid densities and layer thicknesses and the net flow rate.

An Analytical Investigation on Fluid Dynamics of Filler Neck Check Valve for On-board Refueling Vapor Recovery (주유중 증발가스제어 필러넥 체크밸브의 유동해석)

  • 김성훈;이재천
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.105-111
    • /
    • 2003
  • ORVR filler neck check valve, which is one of the essential components of the vapor fuel control system, should diminish the evaporation by maintaining laminar fluid flow on refueling process. This study presents numerical. results of pressure and velocity distributions of the fluid flow in a ORVR filler neck check valve on refueling process. CFD-ACE+ has been employed for numerical analysis based on the information of experimental results of valve position as a function of inlet flow rate. No abrupt pressure change, which may causes vaporization of fuel, has been confirmed to take place on the concave surface of the valve spool. However, it is clear that some possibility exist at the mid-position of surface of valve spool and downstream according to the opening of valve.

Experimental and Numerical Study on the Binary Fluid Flows in a Micro Channel (마이크로 채널 내의 이상유동에 대한 실험 및 수치해석적 연구)

  • Park, Jae-Hyoun;Heo, Hyeung-Seok;Suh, Young-Kweon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.86-91
    • /
    • 2006
  • In this parer, we present the bubble forming and motion in the micro channel by using the two-dimensional numerical computation and experiment. In the numerical computation, The Lattice Boltzmann method(LBM) and free-energy model is used to treat the interfacial force and deformation of binary fluid system, drawn in to a micro channel and a numerical simulation is carried out by using the parallel computation method. The urn in this investigation is to examine the applicability of LBM to numerical analysis and experimental method of binary fluid separation and motion in the micro channel.

  • PDF

Clinical Utility of Two Interferon-gamma Release Assays on Pleural Fluid for the Diagnosis of Tuberculous Pleurisy

  • Kang, Ji Young;Rhee, Chin Kook;Kang, Na Hyun;Kim, Ju Sang;Yoon, Hyoung-Kyu;Song, Jeong Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.3
    • /
    • pp.143-150
    • /
    • 2012
  • Background: The release of interferon-gamma (IFN-${\gamma}$) by T lymphocytes increases after rechallenge with Mycobacterium tuberculosis antigen, especially, at a localized site of tuberculosis (TB) infection. We aimed to compare the clincial efficacy of two commercial IFN-${\gamma}$ release assays from pleural fluid for the diagnosis in tuberculous pleurisy. Methods: We performed T-SPOT.TB and QuantiFERON-TB Gold tests simultaneously on pleural fluid and peripheral blood samples from patients with pleural effusion, in South Korea, an area with intermediate TB burden. Results: Thirty-six patients were enrolled prospectively, and tuberculous pleurisy was found in 21 patients. Both the numbers of IFN-${\gamma}$ secreting T cells and the concentration of IFN-${\gamma}$ were greater in the pleural tuberculous group, comparing with the non-tuberculous group. Moreover, in the tuberculous group, there was a significant difference in IFN-${\gamma}$ producing spot-forming cells using the T-SPOT.TB method between pleural fluid and peripheral blood. The receiver operating characteristic (ROC) curve, was the greatest for pleural fluid T-SPOT.TB test, followed by peripheral blood T-SPOT.TB test, peripheral blood QuantiFERON-TB Gold test, and pleural fluid QuantiFERON-TB Gold test (area under the ROC curve of 0.956, 0.890, 0.743, and 0.721, respectively). The T-SPOT.TB assay produced less indeterminate results than did QuantiFERON-TB Gold assay in both pleural fluid and peripheral blood. Conclusion: These findings suggest that the pleural fluid T-SPOT.TB test could be the most useful test among the IFN-${\gamma}$ release assays for diagnosing tuberculous pleurisy in an area with an intermediate prevalence of TB infection.

Electromagnetic Design and Performance Evaluation of an MR Valve (MR 밸브의 전자기적 설계와 성능평가)

  • Kim, Ki-Han;Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.240-249
    • /
    • 2008
  • This paper presents an electromagnetic design method for magneto-rheological (MR) valves. Since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high-level fluid power without any mechanical moving parts. In order to improve the performances of the MR valve, it is important that the magnetic field is effectively supplied to the MR fluid. For the purpose, the magnetic circuit composed with the yoke for forming magnetic flux path, the electromagnetic coil and the MR fluid should be well designed. In order to improve the static characteristic of the MR valve, the length of the magnetic flux path is decreased by removing the unnecessary bulk of the yoke. Also, in order to improve its dynamic and hysteretic characteristics, the magnetic reluctance of the magnetic circuit should be increased by minimizing the cross-sectional area of the yoke through which the magnetic flux passes. After two MR valves, one is a conventional type valve and the other is the proposed one, are designed and fabricated, their performances are evaluated experimentally.

Talc Mineralization in the Middle Ogcheon Metamorphic Belt (II) : Poongjeon Talc Deposit (중부옥천변성대의 활석광화작용에 관한 연구 (II) : 풍전활석광상을 중심으로)

  • Park, Hee-In;Lee, In Sung;Hur, Soon Do;Shin, Dong Bok
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.543-551
    • /
    • 1997
  • Poongjeon talc deposits is emplaced in dolomite and dolomitic limestone of the Cambro-Ordovician Samtaesan Formation. Ore in Poongjeon is low grade talc and the deposit has been known as the contact metasomatic or hydrothermal replacement type related to the intrusion of late Cretaceous granite in this area. X-ray diffraction, electron microprobe analysis, fluid inclusion and stable isotope analysis were utilized to examine the mineralogy of the ore and the origin of the ore fluid. The ore from Poongjeon mine mainly consists of talc and tremolite with minor amount of illite, vermiculite, smectite, and chlorite-vermiculite mixed layer. Occurrence of ore body indicates that the talc-tremolite ore was formed through the replacement by the $SiO_2$-rich hydrothermal fluid along the bedding and dike boundaries, or contact of amphibolite and basic dike with carbonate rocks. The temperature and pressure of the ore forming fluids at the time of the talc mineralization were estimated as $350^{\circ}C$ and 400 bar, respectively, based on the heating and freezing data of the fluid inclusions in quartz from talc-tremolite veins. During the talc-tremolite formation, fluids were divided into $CO_2$-enriched fluid and $CO_2$-poor fluid from $CO_2$ immiscibility (or effervescence). Oxygen isotope values (${\delta}^{18}O$) of the talc-tremolite fall within a range between 12.2 and 12.9‰. Hydrogen isotope values(${\delta}D$) of the ore range from -60 to -85‰ and $H_2O$ contents range from 2.0 to 3.4 wt.%. ${\delta}^{18}O$ and ${\delta}D$ values of talc ore indicate that the hydrothermal fluid involved in talc-tremolite formation was of igneous origin. Oxygen and hydrogen isotopic exchange between talc ore and the surface water was negligible after talc-tremolite ore formation.

  • PDF

The Numerical Analysis of Extrusion Forming on the Manufactured Artificial Lightweight Aggregate Made of Incinerated Sewage Sludge Ash by a Finite Element Method (유한요소법을 이용한 하수슬러지 소각재의 인공경량골재 제조시 압출성형해석)

  • Jung, Byung-Gil;Bae, Jin-Woo;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1169-1177
    • /
    • 2007
  • The main objective of this research was to evaluate the effects of process variables which were forming ability, flow displacement, effective stress, effective strain, fluid vector and products defects on manufactured artificial lightweight aggregate made of both incinerated sewage sludge ash and clay by means of the numerical analysis of a rigid-plastic finite element method. CATIA (3D CAD program) was used for an extrusion metal mold design that was widely used in designing aircraft, automobile and metallic molds. A metal forming analysis program (ATES Co.) had a function of a rigid-plastic finite element method was used to analyze the program. The result of extrusion forming analysis indicated clearly that a shape retention of the manufactured artificial light-weight aggregate could be maintained by increasing the extrusion ratio (increasing compressive strength inside of extrusion die) and decreasing the die angle. The stress concentration of metal mold was increased by increasing an extrusion ratio, and it was higher in a junction of punch and materials, friction parts between a bottom of the punch and inside of a container, a place of die angle and a place of die of metal mold. Therefore, a heat treatment as well as a rounding treatment for stress distribution in the higher stress concentration regions were necessary to extend a lifetime of the metallic mold. A deformity of the products could have made from several factors which were a surface crack, a lack of the shape retention and a crack of inside of the products. Specially, the surface crack in the products was the most notably affected by the extrusion ratio.

Dynamic Simulation of Solid Particle Considering Change by Viscosity in Rheology Material (반응고 재료에서 점성을 고려한 고상입자의 거동예측을 위한 수치모사 해석)

  • Kwon, K.Y.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.26-38
    • /
    • 2009
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology process to be performed. General plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape which is rectangle shape(square array), rectangle shape(hexagonal array), and free shape tool. In addition, the dynamics behavior compare with Okano equation to power law model which is viscosity equation.