• Title/Summary/Keyword: Fluid Film Bearing

Search Result 124, Processing Time 0.024 seconds

Damages of the Sliding Surface in Fluid Film Bearings (유체 윤활 미끄럼 베어링의 표면 손상)

  • 하현천;방경보;박영철;김일봉
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.196-202
    • /
    • 1998
  • Because the journal and bearing surface are fully separated by the oil film during the normal operation, fluid film bearings operating in the hydrodynamic lubrication region are expected to have an infinite life. However, there are many parameters that lead to interfere with the normal operation of the bearing and lead to its failure. In this paper, both the causes and countermeasures of the bearing failure are described. Also, the characteristics of wiped bearing surface are investigated through mechanical and chemical test.

  • PDF

A Study on the Electroviscous(EV) Fluid Squeeze Film Damper(SFD) Bearing of the Truncated Cone Type (절단 원추형 전기점성 SFD 베어링 연구)

  • 윤석철
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.8-13
    • /
    • 2003
  • Equivalent Reynolds equation of truncated cone type SFD bearing using nonnewtonian EV fluid is derived. The 3 nondimensional oil film pressures and its forces are obtained with axial and circumferential pressure gradient of bearing respectively, and dynamic characteristics for the stability of rotor-bearing system are obtaind through the governing equation for an elastic rotational shaft. It is shown that EV fluid is less sensitive to the changes of oil-film than newtonian fluids for dynamic characteristics. Therefore, results show that it is better to use an EV fluid with truncated cone type SFD bearing for the vibration control of rotational machines.

Measurement of Fluid Film Thickness on the Valve Plate in Oil Hydraulic Axial Piston rumps (I) - Bearing Pad Effects -

  • Kim, Jong-Ki;Jung, Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • The tribological mechanism between the valve plate and the cylinder block in oil hydraulic axial piston pumps plays an important role on high power density. In this study, the fluid film thickness between the valve plate and the cylinder block was measured with discharge pressure and rotational speed by use of a gap sensor, and a slip ring system in the operating period. To investigate the effect of the valve plate shapes, we designed two valve plates with different shapes . the first valve plate was without a bearing pad, while the second valve plate had a bearing pad. It was found that both valve plates behaved differently with respect to the fluid film thickness characteristics. The leakage flow rates and the shaft torque were also experimented in order to clarify the performance difference between the valve plate without a bearing pad and the valve plate with a bearing pad. From the results of this study, we found out that in the oil hydraulic axial piston pumps, the valve plate with a bearing pad showed better film thickness contours than the valve plate without a bearing pad.

Experiment Onmodal Balancing of a Flexible Rotor Supported on Fluid Film Bearings (유막 베어링에 지지된 탄성회전체의 모드 밸런싱 실험)

  • 정시영;이동환;김영철;제양규
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.235-246
    • /
    • 1995
  • Experiment on the modal balancing of a flexible rotor supported on two kinds of fluid film bearings is performed to verify the modal balancing theory. The fluid film bearings are a tilting pad bearing and a two axial grooved journal bearing. One is inherently stable, but the other is not. The experimental result shows that the modal balancing method is effective for balancing of a high speed flexible rotor system. Besides, the critical speeds and mode shapes measured experimentally are in good coincidence with the results of rotordynamic analysis. Oil whip, which is the instability phenomenon due to fluid film force, is also observed during the experiment.

  • PDF

A Study on Dynamics Characteristic Analysis of Elliptical Journal Bearing (타원형 저어널 베어링의 동특성 해석에 관한 연구)

  • Park, Seong-Hwan;O, Taek-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.20-27
    • /
    • 2002
  • An analysis model for an elliptical fluid film bearing is described. The principles of hydrodynamic lubrication are outlined together with an expanded version of the governing pressure field equation as related to elliptical journal bearing. Finite element method approximations are given for the pressure field equation and a temperature model, both related to the fluid film thickness. The thermal effects in the lubricant viscosity, lubricant film thickness, variation of the journal rotating speed and influence of turbulence are investigated in this paper A finite element model and an iterative computational process are described, whereby full simultaneously converged field solutions for fluid film thickness, temperature, viscosity, pressure, stiffness and damping coefficient are obtained.

Development of a New Analysis Method of Fluid Film for Efficient Estimate of the Moving Characteristics of Hydrostatic Bearings (유정압베어링 운동특성의 효과적인 예측을 위한 새로운 유막 해석방법의 개발)

  • 전상렬;김권희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.166-174
    • /
    • 2003
  • Hydrostatic bearings are widely used in precision machines due to their high motion guide accuracy, low friction and high load carrying capacity. It is very useful to estimate the moving characteristics of hydrostatic bearings in the design stage. A new method is suggested for the analysis of fluid film in hydrostatic bearings. A combined mesh of 8 node solid elements with negligible deformation resistance and spring-dashpot elements is used in conjunction with the user subroutine of ABAQUS to represent the fluid film. The mesh can be used to capture the deformation of the bearing structure as well as the varying properties of fluid film. Analysis results from the finite element model are compared with theoretical solutions, results from FLUENT analysis and some previous works. With this method, static and dynamic analyses of the system containing the bearings can be performed efficiently.

An Analysis of Dynamic Behavior of Fluid Dynamic Bearing for Hard Disk Drive Spindle Motor

  • Song, Young-Han;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.18-26
    • /
    • 2003
  • Recently, fluid dynamic bearings (EDBs) have important applications in miniature rotating machines such as those found in the computer information storage industry, due to their outstanding low acoustic noise and NRRO (Non-Repeatable Run Out) characteristics. This research investigates the dynamic behavior of fluid dynamic bearings composed of hydrodynamic herringbone groove journal and spiral groove thrust bearing. The five degrees of freedom of FDB are considered to describe the real motion of a general rotor bearing system. The Reynolds equation and five nonlinear equations of motion for the dynamic behavior are solved simultaneously, The incompressible Reynolds equation is solved by using the finite element method (FEM) in order to calculate the pressure distribution in a fluid film and the five equations of motion by using the Runge-Kutta method. The reaction forces and moments are obtained by integrating the pressure along the fluid film. Numerical results are validated by comparing with the previously published experimental and numerical results. As a result the dynamic behavior of FDB spindle such as orbit, floating height, and angular orbit is investigated by considering the conical motion under the static and dynamic load conditions.

Effects of Oil Supply into Inner Film on Performance of Floating-Ring Journal Bearing (내측유막으로의 공급유량이 플로팅 링 저어널베어링의 성능에 미치는 영향)

  • 김종수;최상규;유광택
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.98-107
    • /
    • 1999
  • In this work the effect of pressure drop at inner film due to centrifugal forces acting on the lubricating fluid is investigated for static and dynamic characteristics of floating ring journal bearing. The momentum effect of oil supply into a inner film through oil feeding holes of floating ring on the bearing performance is also studied. It is compared the pressure drop effects and the momentum effect of oil supply into a inner film fur all bearing performance parameters. It is shown that some performance of floating ring bearings can be controled by the momentum of oil supply into a inner film.

A Study on Lubrication Characteristic of the Hydrostatic Bearing In Swash Plate Type Piston Motor (사판식 피스톤 모터의 정압베어링 윤활특성에 관한 연구)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.5-9
    • /
    • 2011
  • The hydraulic piston using a hydrostatic bearing has been used widely due to its satisfying performance at very high pressurized circumstance and relative higher power density in comparison to conventional one. For high pressurization, enhanced efficiency and long durability of the hydraulic piston, the design of hydrostatic bearing is at issue, which is installed between piston shoe and swash plate. The performance of the hydrostatic bearing is influenced significantly by the assembly of the piston shoe consisting of circular land and recess. In this study, to estimate the performance of the hydrostatic bearing, the characteristics for lubrication of the assembly of the piston shoe were investigated by measuring a leakage rate of hydraulic fluid under an experimental condition, where a rotating velocity of the piston, hydraulic pressure and temperature of the hydraulic fluid were changed systematically. In addition, a film thickness of the hydraulic fluid on the piston shoe was measured and compared to theoretical one.

Dynamic Characteristics of a Coupled Journal and Thrust Hydrodynamic Bearing in a HDD Spindle System Due to Groove Location (HDD 스핀들 시스템에 사용되는 저널과 트러스트가 결합된 유체 동압 베어링의 홈 위치에 따른 동특성 해석)

  • 윤진욱;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.304-311
    • /
    • 2001
  • This research numerically analyzes the dynamic characteristics of a coupled journal and thrust hydrodynamic bearing due to its groove location which has the static load due to the weight of a rotor in the axial direction and the dynamic load due to its mass unbalance in the radial direction. The Reynolds equation is transformed to solve a plain member rotating type of journal bearing(PMRJ), a grooved member rotating type of journal bearing (GMRJ), a plain member rotating type of thrust bearing (PMRT) and a grooved member rotating type of thrust bearing (GMRT). FEM is used to solve the Reynolds equations in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or floating height of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the groove location affects the pressure distribution in the fluid film and consequently the dynamic performance of a HDD spindle system.

  • PDF