• Title/Summary/Keyword: Fluid Device

Search Result 700, Processing Time 0.024 seconds

Interactive Fluid Simulation Method for Mobile Device (모바일 기기를 위한 실시간 유체 시뮬레이션 엔진)

  • Kim, Do-Yub;Song, Oh-Young;Ko, Hyeong-Seok
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.463-468
    • /
    • 2009
  • This paper proposes a method for extending simulating fluid on mobile device, which was only possible on desktop PC. Fluid simulation is done by solving Navier-Stokes equation numerically, and previous research were mainly focused on numerical stability [1], and realism [2]. However, such methods assume rich computational resources, which is not available on mobile devices. On the other hand, rigid-body solver is the mostly used physically-based technique [3], and only simple height field-based method is released for fluid simulation [4]. To overcome these problems, we proposes a modified incompressible fluid dynamics solver for the mobile device, and also we propose a technique for visualizing fluids on the mobile device.

  • PDF

A Study on the Surface Control of a Magnetic Fluid (자성유체의 표면제어에 관한 연구)

  • Shin, J.O.;Rhee, E.J.;Park, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.65-69
    • /
    • 2001
  • In this study, the deformation of the free surface motion of a magnetic fluid for the change in electromagnetic force is discussed. In case, magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. Thus, the device of a magnetic fluid proposed the complete zero-leakage Sealing and the surface actuator. The device of surface deformation as well comparison between numerical simulation and experiments as will be presented.

  • PDF

Effect of Internal Fluid Resonance on the Performance of a Floating OWC Device

  • Cho, Il Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.216-228
    • /
    • 2021
  • In the present study, the performance of a floating oscillating water column (OWC) device has been studied in regular waves. The OWC model has the shape of a hollow cylinder. The linear potential theory is assumed, and a matched eigenfunction expansion method(MEEM) is applied for solving the diffraction and radiation problems. The radiation problem involves the radiation of waves by the heaving motion of a floating OWC device and the oscillating pressure in the air chamber. The characteristics of the exciting forces, hydrodynamic forces, flow rate, air pressure in the chamber, and heave motion response are investigated with various system parameters, such as the inner radius, draft of an OWC, and turbine constant. The efficiency of a floating OWC device is estimated in connection with the extracted wave power and capture width. Specifically, the piston-mode resonance in an internal fluid region plays an important role in the performance of a floating OWC device, along with the heave motion resonance. The developed prediction tool will help determine the various design parameters affecting the performance of a floating OWC device in waves.

CFD flow analysis of 150mm shower heads depending on plasma pitch (플라즈마 피치에 따른 150mm 샤워헤드에 대한 CFD 유동해석)

  • Kim, Dong-Hwa;Kim, Ho-Bum;Cho, Chong-Du;Jeong, Dea-Kyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.585-589
    • /
    • 2008
  • This study is performed to analyze the fluid flow about 150mm shower heads of semiconductor device. Under the air pressure, the ideal gas of moving fluid is injected as 5m/s velocity into inlet of shower heads and the flow distribution in shower heads is measured according to pitch of plasma distribution device. As results, the maximum and minimum value of fluid velocity are investigated with their position. The velocity values at outlet are also studied. From two experiment using the plasma distribution device, the results of CFD are compared with the experimental results. That results shows stable flow of fluid in that case of corrected design from CFD.

  • PDF

MR Haptic Device for Integrated Control of Vehicle Comfort Systems (차량 편의장치 통합 조작을 위한 MR 햅틱 장치)

  • Han, Young-Min;Jang, Kuk-Cho
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.291-298
    • /
    • 2017
  • In recent years, the increase of secondary controls within vehicles requires a mechanism to integrate various controls into a single device. This paper presents control performance of an integrated magnetorheological (MR) haptic device which can adjust various in-vehicle comfort instruments. As a first step, the MR fluid-based haptic device capable of both rotary and push motions within a single device is devised as an integrated multi-functional instrument control device. Under consideration of the torque and force model of the proposed device, a magnetic circuit is designed. The proposed MR haptic device is then manufactured and its field-dependent torque and force are experimentally evaluated. Furthermore, an inverse model compensator is synthesized under basis of the Bingham model of the MR fluid and torque/force model of the device. Subsequently, haptic force-feedback maps considering in-vehicle comfort functions are constructed and interacts with the compensator to achieve a desired force-feedback. Control performances such as reflection force are experimentally evaluated for two specific comfort functions.

Performance Study of Wind Augmentation Device for Building-integrated Wind Power (건물 풍력발전을 위한 집풍장치 성능 연구)

  • Shin, Jae-Ryul;Park, Jae-Jeun;Kim, Han-Young;Kim, Dae-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.42-49
    • /
    • 2012
  • This study is performance estimation of wind augmentation device for BiWP(Building-integrated Wind Power) which recently attracts attention as a local power. various structures are installed on a rooftop of residential complex buildings. Changing a profile of these, we designed a configuration that is able to capture much air and increase exit velocity. To estimate wind augmented effect of this device, we compared numerical analysis results with wind tunnel test results. Results show that exit velocity is increased from 24% to 60% by wind augmented device on a rooftop of building.

Design of Oil Supply Enhancement Device for a Variable Speed Reciprocating Compressor (가변속 왕복동 압축기의 급유 촉진기구 설계)

  • 김현진;이태진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • This paper addresses an oil supply enhancement device to resolve a shortage of oil supply or no oil supply at all encountered at low speed operation for a variable speed reciprocating compressor used for household refrigerators. The oil supply enhancement device comprises a moving cylinder attached to the lower end of crankshaft and two of fluid diodes, each one at the inlet and outlet of the cylinder. Up-and-down movement of the cylinder against the lower end of the crankshaft together with the functioning of the two fluid diodes produces net oil flow from oil reservoir to inside the crankshaft. The experiment on the test bench has shown that enough oil supply into the oil feeding hole cu be made by using this device even at low speed range. Some analytical study has also been carried out to under-stand its oil supply mechanism.

A Study on the Deformation control of Free Surface of Magnetic Fluid (자성유체 자유표면의 형상 제어에 관한 연구)

  • 안창호;김대영;지병걸;이은준;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.297-300
    • /
    • 2002
  • In this study, the deformation of the free surface motion of a magnetic fluid for the change in electromagnetic force is discussed and carried out theoretically and experimentally on the basis of Rosensweig Ferrohydrodynamic Bernoulli Equation. While applied magnetic fields are induced by 4$\times$4 electromagnet located under the magnetic fluid, the surface of the magnetic fluid is formed the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body farce. In case, magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. thus, the device of a magnetic fluid proposed the surface actuator. The device of surface deformation as well comparison between numerical simulation and experiments as will be presented.

  • PDF

Force Feedback Control of 3 DOF Haptic Device Utilizing Electrorheological Fluid (ER 유체를 이용한 3 자유도 햅틱 장치의 힘 반향 제어)

  • Han, Y.M.;Kang, P.S.;Choi, S.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.213-216
    • /
    • 2005
  • This paper presents force feedback control performance of a 3DOF haptic device that can be used for minimally invasive surgery (MIS). As a first step, a 3DOF electrorheological (ER) joint is designed using a spherical mechanism. And it is optimized based on the mathematical torque modeling. Subsequently, the master haptic device is manufactured by the spherical joint. In order to achieve desired force trajectories, model based compensation strategy is adopted for the ER master. Therefore, Preisach model fur the PMA-based ER fluid is identified using experimental first order descending (FOD) curves. A compensation strategy is then formulated through the model inversion to achieve desired force at the ER master. Tracking control performances for sinusoidal force trajectory are presented, and their tracking errors are evaluated.

  • PDF

Design and Performance Evaluation of Tactile Device Using MR Fluid (MR 유체를 이용한 촉감구현장치의 설계 및 성능 평가)

  • Kim, Jin-Kyu;Oh, Jong-Seok;Lee, Snag-Rock;Han, Young-Min;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1220-1226
    • /
    • 2012
  • This paper proposes a novel type of tactile device utilizing magnetorheological(MR) fluid which can be applicable for haptic master of minimally invasive surgery(MIS) robotic system. The salient feature of the controllability of rheological properties by the intensity of the magnetic field(or current) makes this potential candidate of the tactile device. As a first step, an appropriate size of the tactile device is designed and manufactured via magnetic analysis. Secondly, in order to determine proper input magnetic field the repulsive forces of the real body parts such as hand and neck are measured. Subsequently, the repulsive forces of the tactile device are measured by dividing 5 areas. The final step of this work is to obtain desired force in real implementation. Thus, in order to demonstrate this goal a neuro-fuzzy logic is applied to get the desired repulsive force and the error between the desired and actual force is evaluated.