• Title/Summary/Keyword: Fluence-to-dose response functions

Search Result 3, Processing Time 0.019 seconds

New skeletal dose coefficients of the ICRP-110 reference phantoms for idealized external fields to photons and neutrons using dose response functions (DRFs)

  • Bangho Shin;Yumi Lee;Ji Won Choi;Soo Min Lee;Hyun Joon Choi;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1949-1958
    • /
    • 2023
  • The International Commission on Radiological Protection (ICRP) Publication 116 was released to provide a comprehensive dataset of the dose coefficients (DCs) for external exposures produced with the adult reference voxel phantoms of ICRP Publication 110. Although an advanced skeletal dosimetry method for photons and neutrons using fluence-to-dose response functions (DRFs) was introduced in ICRP Publication 116, the ICRP-116 skeletal DCs were calculated by using the simple method conventionally used (i.e., doses to red bone marrow and endosteum approximated by doses to spongiosa and/or medullary cavities). In the present study, the photon and neutron DRFs were used to produce skeletal DCs of the ICRP-110 reference phantoms, which were then compared with the ICRP-116 DCs. For photons, there were significant differences by up to ~2.8 times especially at energies <0.3 MeV. For neutrons, the differences were generally small over the entire energy region (mostly <20%). The general impact of the DRF-based skeletal DCs on the effective dose calculations was negligibly small, supporting the validity of the ICRP-116 effective DCs despite their skeletal DCs derived from the simple method. Meanwhile, we believe that the DRF-based skeletal DCs could be beneficial in better estimates of skeletal doses of individuals for risk assessments.

Photon dose response functions for accurate skeletal dosimetry for Korean and Asian populations

  • Bangho Shin;Chansoo Choi;Rui Qiu;Suhyeon Kim;Hyeonil Kim;Sungho Moon;Gahee Son;Jaehyo Kim;Haegin Han;Yeon Soo Yeom;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2195-2207
    • /
    • 2024
  • To enhance skeletal dosimetry in conjunction with the adult mesh-type reference Korean phantoms (MRKPs), Korean/Asian photon fluence-to-skeletal dose response functions (DRFs) were established utilizing an updated version of micro-CT-based detailed bone models from Tsinghua University. These bone models were incorporated into the MRKPs using the parallel geometry feature of Geant4. We calculated bone-site-specific electron absorbed fractions and used them to generate DRFs, following a similar methodology employed for ICRP-116 DRFs that have been used with the ICRP reference phantoms for skeletal dosimetry. To assess dosimetric implications of the Korean/Asian DRFs, we calculated RBM and BE doses for the MRKPs exposed to photon beams in the antero-posterior direction using the Korean/Asian and ICRP-116 DRFs. For energies ≥200 keV, the Korean/Asian DRFs-based skeletal doses exhibited excellent agreement with the ICRP-116 DRFs-based skeletal doses, attributed to the existence of charged particle equilibrium across the bone site. Conversely, significant differences of up to ~2.3 times were observed at lower energies, due to differences in the skeletal tissue distributions of bone models used to derive the Korean/Asian and ICRP-116 DRFs. The DRFs established in this study are expected to yield more accurate skeletal doses for Korean and Asian populations compared to the ICRP-116 DRFs.

SPECTRUM WEIGHTED RESPONSES OF SEVERAL DETECTORS IN MIXED FIELDS OF FAST AND THERMAL NEUTRONS

  • Kim, Sang In;Chang, Insu;Kim, Bong Hwan;Kim, Jang Lyul;Lee, Jung Il
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.273-280
    • /
    • 2014
  • The spectrum weighted responses of various detectors were calculated to provide guidance on the proper selection and use of survey instruments on the basis of their energy response characteristics on the neutron fields. To yield the spectrum weighted response, the detector response functions of 17 neutron-measuring devices were numerically folded with each of the produced calibration neutron spectra through the in-house developed software 'K-SWR'. The detectors' response functions were taken from the IAEA Technical Reports Series No. 403 (TRS-403). The reference neutron fields of 21 kinds with 2 spectra groups with different proportions of thermal and fast neutrons have been produced using neutrons from the $^{241}Am$-Be sources held in a graphite pile, a bare $^{241}Am$-Be source, and a DT neutron generator. Fluence-average energy ($E_{ave}$) varied from 3.8 MeV to 16.9 MeV, and the ambient-dose-equivalent rate [$H^*(10)/h$] varied from 0.99 to 16.5 mSv/h.