• Title/Summary/Keyword: Flue-gas temperature

Search Result 230, Processing Time 0.027 seconds

Experiment on Low $NO_x$ Combustion Characteristics by Flue Gas Dilution In Air and Fuel Sides (공기 및 연료에 대한 배기가스 희석 방법에 의한 저 $NO_x$ 연소특성에 관한 실험)

  • Cho, Eun-Seong;Chung, Suk-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1499-1504
    • /
    • 2004
  • Flue gas recirculation (FGR) is a method used to control oxides of nitrogen ($NO_x$) in combustion system. The recirculated flue gases resulted in slow reaction and low flame temperatures, which in turn resulted in decreased thermal NO production. Recently, it has been demonstrated that introducing the recirculated flue gas in the fuel stream, that is, the fuel induced recirculation (FIR), resulted in a much greater reduction in $NO_x$ per unit mass of recirculated gas, as compared to introducing the flue gases in air. In the present study, the effect on $NO_x$ reduction in turbulent swirl flame in laboratory scale using FGR/FIR methods through the dilution using $N_2$ and $CO_2$. Results. show the $CO_2$ dilution is more effective $NO_x$ reduction methods because of large temperature drop due to the larger specific heat $CO_2$ compared to $N_2$. FIR is more effective to reduce $NO_x$ emission than FGR when the same recirculation ratio of dilution gas.

  • PDF

Effect of Flue Gas Heat Recovery on Plume Formation and Dispersion

  • Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.161-172
    • /
    • 2012
  • Three-dimensional numerical simulation using a computational fluid dynamics (CFD) was carried out in order to investigate the formation and dispersion of the plume discharged from the stack of a thermal power station. The simulation was based on the standard ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite-volume method. Warm and moist exhaust from a power plant stack forms a visible plume as entering the cold ambient air. In the simulation, moisture content, emission velocity and temperature of the flue gas, air temperature and wind speed were dealt with the main parameters to analyze the properties of the plume composed mainly of water vapor. As a result of the simulation, the plume could be more apparent in cold winter due to a big difference of latent heat capacity. At no wind condition, the white plume rises 120 m upward from the top of the stack, and expands to 40 m around from the stack in cold winter after flue gas heat recovery. The influencing distance of relative humidity will be about 100 m to 400 m downstream from the stack with a cross wind effect. The decrease of flue gas temperature by heat recovery of thermal energy facilitates the formation of the plume and restrains its dispersion. Wind speed with vertical distribution affects the plume dispersion as well as the density.

Effect of Air Velocity on Combustion Characteristics in Small-Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressure-swirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates ranging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2$, NOx, $SO_2$, flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity on $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Effect of Air Velocity on Combustion Characteristics Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • v.10 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressureswirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates raging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2,\;NOx,\;S0_2,$ flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$ concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Microalgal Culture Conditions for Utilization of Flue Gas from Rice Husk Incinerator (왕겨 소각로 배연가스 이용을 위한 미세죠류 배양 조건 확립)

  • 박승제;조성호;이진석;정용섭
    • Journal of Biosystems Engineering
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 1999
  • This study was performed to investigate the optimum microalgal culture conditions using flask culture and to find the feasibility of using the flue gas of the rice husk incinerator for cultivating the microalgae. The optimum initial pH of media was 4.5 for the microalgae culture, and the intermittently illuminated culture was more effective than the continuous illuminated culture. Thus, the balance between photosynthesis and formative metabolism must be considered thoroughly to cultivate microalgal cells. The optimum CO2 concentrations were in the range of 7 to 10%, and the optimum temperature was about 35$^{\circ}C$ in both the daytime and the nighttime for the culture. When flue gas of the rice husk incinerator was applied to the microalgae culture using stirred photobioreactor, the dry cell weight was 0.026 g dry biomass/hr$.$l. The results obtained in experiments indicated that the flue gas was effective for microalgae culture without any limitations.

  • PDF

A Preliminary Experimental Study on the Development of Oxy-Fuel Combustion Heating System with $CO_2$ Recycle ($CO_2$ 재순환형 산소연소 가열시스템개발에 관한 실험적 연구)

  • Lee, Eun-Kyung;Go, Chang-Bok;Jang, Byung-Lok;Han, Hyung-Kee;Noh, Dong-Soon;Jeong, Yu-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.69-74
    • /
    • 2006
  • An Experimental study was conducted on $CO_2$ recycle combustion heating system using pure oxygen instead of conventional air as an oxidant, which is thereby producing a flue gas of mostly $CO_2$ and water vapor($H_2O$) and resulting in higher $CO_2$ concentration. The advantages of the system are not only the ability to control high temperatures characteristic of oxygen combustion with recycling $CO_2$. but also the possibility to reduce NOx emission in the flue gas. A small scale industrial reheating furnace simulator and specially designed variable flame burner were used to characterize the $CO_2$ recycle oxy-fuel combustion, such as the variations of furnace pressure, temperature and composition in the flue gas during recycle. It was found that $CO_2$ concentration in the flue gas was about 80% without $CO_2$ recycle, but increased to $90{\sim}95%$ with $CO_2$ recycle. The furnace temperature and pressure was decreased due to recycle and the NOx emission was also reduced to maintain under 100ppm.

  • PDF

Prevention of local overheating of a radiant tube heater (열처리용 복사튜브의 국부 과열 해소)

  • Kim H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.119-125
    • /
    • 2004
  • Radiant tube heaters are widely used for indirect heating in heat treatment processes such as continuous annealing line(CAL) or continuous galvanizing line(CGL). Main issues for radiant tube are temperature uniformity, lifetime, thermal efficiency. To achieve higher heat release, the radiant tubes are fired at a higher fuel rate and therefore local overheating occur. A numerical simulation based on a commercial code FLUENT has been performed to investigate local overheating of radiant tube heaters. To minimize local overheating, the effects of radiating fins, flue gas recirculation(FGR), two-stage combustion were investigated. More uniform temperature distribution was achieved in the longitudinal direction within the tube with radiating fins and this contributed to increase the life of radiant tubes. Furthermore, the radiant tube with radiating fins was proven to be more efficient than the one without fins. The effects of flue gas recirculation and two stage combustion on the efficiency of the radiant tube were also considered and the results were presented.

  • PDF

Optimal Operation Condition of Spray Drying Sorber for Simultaneous Removal of Acidic and Organic Gaseous Pollutants (산성 및 유기성 가스의 동시제거를 위한 준건식 세정시스템의 적정 운전 조건)

  • 백경렬;구자공
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.59-64
    • /
    • 2001
  • The effect of major operating parameters in spray drying sorber(=SDS) for automatic control for the simultaneous removal of acidic and organic gaseous pollutants from solid waste incinerator was performed. The field experiment was carried out in pilot scale test for the quantification of major operating parameters of hydrophilic and the hydrophobic pollutants. The removal efficiencies of $SO_2$and HCI in the 5wt% slurry condition were being increased with the increase of the stoichiometric ration which is the molecular ratio of lime to the pollutant concentration, and with the decrease of inflow flue gas temperature in the pilot SDS reactor. The removal efficiency along the height of spray drying sorber was closely related to the temperature profile, and more than 90% of total removal efficiency was achieved in an absorption region. For the removal of acidic gas the optimum operating condition considering the economics and a stable operation is the 5wt% of slurry concentration, 1.2 of stoichiometric ratio and 25$0^{\circ}C$ of inflow flue gas temperature. For the organic gases of benzene and toluene the removal efficiencies were 20-60% which is much lower than that of acidic gas. The best removal efficiency was obtained at 1.5 of stoichiometric ratio and 25$0^{\circ}C$ of inflow flue gas temperature. The organic\`s removal efficiency along the height of spray drying sorber was quite different from that of acidic gas, that is, more than 60% of the total removal efficiency for benzene and 90% of the total removal for toluene were achieved in the dried adsorption region, which was formed at the lower or exit part of the reactor.

  • PDF

Emission Characteristics of VOCs in Drying Process for Plywood Manufacturing (합판 제조용 목재 건조공정에서의 휘발성 유기화합물(VOCs) 배출특성)

  • Jang, Jeong-Gook;Kim, Mi-Ran
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1381-1390
    • /
    • 2008
  • Emission characteristics of volatile organic compounds (VOCs) were investigated in the flue gas emitted from wood drying process for plywood manufacturing. The moisture content of raw timber was average 48%, and its density was $831.55kg/m^3$. But the moisture content of dried wood is needed less than around 10%, thus the moisture contents of flue gas should be remarkably high(about 18.2 V/V%). Therefore, the vapor in flue gas is equivalent to 320 ton-vapor/day when 1100 ton-wood/day is treated in the wood drying process. The temperature of flue gas ranges from $140^{\circ}C\;to\;150^{\circ}C$ in each dryer stack with exception of the input site of wood(about $110^{\circ}C$). The velocity of flue gas in each stack ranges from 1.7 to 9.7m/sec. In order to assess the concentrations and attribution rate of odorous compounds, it was analyzed about 40 VOCs in the flue gases. It was found that the major odorous compounds were 8 compounds, and the concentrations of major VOCs(ppm) were as follows; benzene: $0.054{\sim}0.052$, toluene: $1.011{\sim}2.547$, ethylbenzene: $0.472{\sim}2.023$, m,p-xylene: $0.504{\sim}3.245$, styrene: $0.015{\sim}0.148$, o-xylene : $0.271{\sim}1.097$, ethanol: $11.2{\sim}32.5$, ${\alpha}$-pinene: $0.908{\sim}10.578$, ${\beta}$-pinene: $0.982{\sim}14.278$. The attribution rate of terpenes (${\alpha}$-pinene, ${\beta}$-pinene) was about 60.56%, and that of aromatics and alcohols was about 22.77%, and 16.67%, respectively. It is suggested that the adequate control device should be used to control both the water soluble and non-soluble compounds because both compounds were mixed in flue gas.

Modeling of a pulse combustion water heater (맥동 연소식 온수기의 모델링)

  • 이관수;김창기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.982-990
    • /
    • 1987
  • In previous modeling of Helmholtz-type pulse combustion water heater, muffler and the motion of the flapper valve were omitted. In present work, these have been included in modeling for providing more accurate information regarding the thermal and dynamic behavior of the water heater. In addition, a computer simulation based on the modeling was developed. The comparison of computer predictions with available experimental data shows that the simulation is satisfactory in predicting the nature of operating behavior, amplitudes of the pressure oscillations, and the magnitude of the frequency. But the predicted time-averaged axial temperature of the flue gas along the flue tube length is somewhat below the previous experimental results. The temperature pulsation of the combustion chamber and the velocity pulsation of the flue gas were predicted which have never been measured in previous studies. In particular, the latter is of importance for a valid determination of the heat transfer enhancement due to the gas flow pulsation. Heat transfer results in flue tube were presented and discussed. Also the effects on the installation of the muffler were investigated.