• Title/Summary/Keyword: Flue-gas temperature

Search Result 230, Processing Time 0.025 seconds

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.

Combustion characteristics of two imported Indonesia coals as a pulverized fuel of thermal power plants (인도네시아산 발전용 수입 석탄 2종의 연소특성 비교 평가)

  • Lee, Hyun-Dong;Kim, Jae-Kwan
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.136-142
    • /
    • 2010
  • Combustion reactivity and thermal behavior of two imported coals used as a pulverized fuel of commercially thermal power plant were investigated by thermogravimetric analysis (TGA) and large scale test furnace of 200 kg/hr. TGA results showed that combustion efficiency of high moisture coal has lower than reference coal due to the slow combustion completion rate although it has the low ignition temperature, and activation energies of high moisture coal with 79 kJ/mol for overall combustion was higher than reference coal of 53 kJ/mol. Test furnace results ascertained that flame of black band of high moisture coal during the combustion in boiler broke out compared to reference coal and then it becomes to unburned carbon due to the less reactivity and combustion rate. But, Blending combustion of high moisture coal with design coal of high sulfur are available because sulfur content of high moisture coal was too low to generate the low SOx content in flue gas from boiler during the combustion. The ash analysis results show that it was not expected to be associated with slagging and fouling in pulverized coal fired systems due to the low alkali metal content of $Na_2O$ and $K_2O$ compared to bituminous coal.

Physical, Morphological, and Chemical Analysis of Fly Ash Generated from the Coal Fired Power Plant (석탄 화력발전소에서 발생되는 석탄회 특성과 형성 분석에 관한 연구)

  • 이정언;이재근
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A physical, morphological, and chemical characteristic of fly ash has been analyzed. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, ash recycling and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution and gravimeter. Morphological characteristic of fly ash is performed using a scanning electron micrograph and an optical microscope. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry (ICP). The distribution of fly ash size was ranged from 15 to 25 $\mu$m in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, relative opacity, coloration, cenosphere and plerosphere. The spherical fly ash might be generated at the condition of complete combustion. The size of fly ash was found to be increased the with particle-particle interaction of agglomeration and coagulation. Fly ash consisted of $SiO_2\;Al_2O_3\;and\;Fe_2O_3$ with 85% and carbon with 3~10% of total mass.

  • PDF

CO2 decomposition characteristics of Ni-ferrite powder (Ni-페라이트 분말을 이용한 CO2 분해 특성)

  • Nam, Sung-Chan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5376-5383
    • /
    • 2011
  • The objective of this study is the development of carbon-recycle technology, that converts carbon dioxide captured from flue gas to carbon monoxide or carbon for reuse in industrial fields. It is difficult to decompose $CO_2$ because $CO_2$ is very stable molecule. And then metal oxide was used as an activation agent or catalyst for the decomposition of $CO_2$ at low temperature. Metal oxides, which converts $CO_2$ to CO or C, were prepared using Ni-ferrite by solid state method and hydrothermal synthesis in this study. TPR/TPO and TGA were used as an analysis method to analyze the decomposition characteristics of $CO_2$. As the results, the reduction area of $H_2$ was high value at 15 wt% of NiO and the decomposition area of $CO_2$ was superior capacity at 5 wt% of NiO. However, TGA data showed contrary results that reduction area of $H_2$ was 28.47wt% and oxidation area by $CO_2$ was 26.95wt% at 2.5 wt% of NiO, one of the Ni-ferrite powders synthesized using solid state method. $CO_2$ decomposition efficiency was 94.66% and it is excellent results in comparison with previous studies.

CO2 decomposition characteristics of Ba-ferrite powder (Ba-페라이트 분말을 이용한 이산화탄소 분해 특성)

  • Nam, Sung-Chan;Park, Sung-Youl;Jeon, Soon-Kwan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5357-5364
    • /
    • 2011
  • The objective of this study is development of carbon recycle technology which convert carbon dioxide captured from flue gas to carbon monoxide or carbon and reuse in industrial fields. Since carbon dioxide is very stable and difficult to decompose, metal oxide was used as activation agent for the decomposition of carbon dioxide at low temperature. Metal oxides which convert $CO_2$ to CO or carbon were prepared using Ba-ferrite by solid and hydrothermal synthesis. TPR/TPO and TGA were used in this study. The results of TPR by H2 and TPO by $CO_2$ showed that Ba-ferrite powders synthesized by hydrothermal method were better than those by solid method. TGA showed contrary results that reduction of Ba-ferrite powders synthesized using solid method by $H_2$ was 21.96 wt%, oxidation by $CO_2$ was 21.24 wt% and 96.72 wt% of $CO_2$ decomposition efficiency showing excellent oxidation-reduction characteristics at $500^{\circ}C$.

Numerical Study of Methane-hydrogen Flameless Combustion with Variation of Recirculation Rate and Hydrogen Content using 1D Opposed-flow Diffusion Flame Model of Chemkin (Chemkin 기반의 1차원 대향류 확산 화염 모델을 활용한 재순환율 및 수소 함량에 따른 메탄-수소 무화염 연소 특성 해석 연구)

  • Yu, Jiho;Park, Jinje;Lee, Yongwoon;Hong, Jongsup;Lee, Youngjae
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.238-248
    • /
    • 2022
  • The world is striving to transition to a carbon-neutral society. It is expected that using hydrogen instead of hydrocarbon fuel will contribute to this carbon neutrality. However, there is a need for combustion technology that controls the increased NOx emissions caused by hydrogen co-firing. Flameless combustion is one of the alternative technologies that resolves this problem. In this study, a numerical analysis was performed using the 1D opposed-flow diffusion flame model of Chemkin to analyze the characteristics of flameless combustion and the chemical reaction of methane-hydrogen fuel according to its hydrogen content and flue gas recirculation rate. In methane combustion, as the recirculation rate (Kv) increased, the temperature and heat release rate decreased due to an increase in inert gases. Also, increasing Kv from 2 to 3 achieved flameless combustion in which there was no endothermic region of heat release and the region of maximum heat release rate merged into one. In H2 100% at Kv 3, flameless combustion was achieved in terms of heat release, but it was difficult to determine whether flameless combustion was achieved in terms of flame structure. However, since the NOx formation of hydrogen flameless combustion was predicted to be similar to that of methane flameless combustion, complex considerations of flame structure, heat release, and NOx formation are needed to define hydrogen flameless combustion.

A Study on the Effect of Fluidizing Media on the N2O Production in Fluidized Bed Incineration of Sewage Sludge (하수슬러지 유동층 소각에서 유동매체가 N2O 발생에 미치는 영향에 관한 연구)

  • Park, Jong-Ju;Lee, Seung-Jae;Ryu, In-Soo;Jeon, Sang Goo;Park, Yeong-Sung;Moon, Seung-Hyun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.390-397
    • /
    • 2014
  • This study was performed to investigate the effects of fluidizing media on $N_2O$ production in fluidized bed incineration of sewage sludge. The fluidized media were prepared in a form of 2 mm bead by mixing zeolite powders in our lab. Sand having 0.4 mm of the mean size showed 0.44 m/s of minimum fluidization velocity ($U_{mf}$), while the prepared zeolite media 0.5 m/s. When the ratio of fluidizing media height to the inside diameter of the incinerator (bed aspect ratio) increased from 1.4 to 3.1, it was found that $U_{mf}$ of the zeolite media was varied from 0.5 m/s to 0.7 m/s. Under the operation conditions in 1.79 of excess air ratio, $909^{\circ}C$ of bed temperature and ca. 1.65 m/s of superficial velocity, as the weight of fluidizing meadia was increased, $O_2$ concentration in the flue gas was slightly decreased, and $CO_2$ increased. Above 6 kg of fluidizing media weight (1.98 of bed aspect ratio), it was observed that $N_2O$ concentration was significantly reduced, which might result from the decomposition of $N_2O$ on the zeolite media rather than transformation of $N_2O$ to NOx. On the other hand, in a variation of the zeolite media mixing ratio to sand and bed temperature at a constant total bed height, significant difference was exhibited in $N_2O$ emission concentration according to the temperature. Considering the operation temperature in the incineration, the effective calcination temperature of the zeolite media was suggested to be around $900^{\circ}C$.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.

A Study on the Optimum Design of Multiple Screw Type Dryer for Treatment of Sewage Sludge (하수슬러지 처리를 위한 다축 스크류 난류 접촉식 건조기의 최적 설계 연구)

  • Na, En-Soo;Shin, Sung-Soo;Shin, Mi-Soo;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.223-231
    • /
    • 2012
  • The purpose of this study is to investigate basically the mechanism of heat transfer by the resolution of complex fluid flow inside a sophisticated designed screw dryer for the treatment of sewage sludge by using numerical analysis and experimental study. By doing this, the result was quite helpful to obtain the design criteria for enhancing drying efficiency, thereby achieving the optimal design of a multiple screw type dryer for treating inorganic and organic sludge wastes. One notable design feature of the dryer was to bypass a certain of fraction of the hot combustion gases into the bottom of the screw cylinder, by the fluid flow induction, across the delicately designed holes on the screw surface to agitate internally the sticky sludges. This offers many benefits not only in the enhancement of thermal efficiency even for the high viscosity material but also greater flexibility in the application of system design and operation. However, one careful precaution was made in operation in that when distributing the hot flue gas over the lump of sludge for internal agitation not to make any pore blocking and to avoid too much pressure drop caused by inertial resistance across the lump of sludge. The optimal retention time for rotating the screw at 1 rpm in order to treat 200 kg/hr of sewage sludge was determined empirically about 100 minutes. The corresponding optimal heat source was found to be 150,000 kcal/hr. A series of numerical calculation is performed to resolve flow characteristics in order to assist in the system design as function of important system and operational variables. The numerical calculation is successfully evaluated against experimental temperature profile and flow field characteristics. In general, the calculation results are physically reasonable and consistent in parametric study. In further studies, more quantitative data analyses such as pressure drop across the type and loading of drying sludge will be made for the system evaluation in experiment and calculation.

Air-staging Effect for NOx Reduction in Circulating Fluidized Bed Combustion of Domestic Unused Biomass (국내 미이용 바이오매스 순환유동층 연소에서 NOx 저감을 위한 air-staging 효과)

  • Yoon, Sang-Hee;Beak, Geon-Uk;Moon, Ji-Hong;Jo, Sung-Ho;Park, Sung-Jin;Kim, Jae-Young;Seo, Myung-Won;Yoon, Sang-Jun;Yoon, Sung-Min;Lee, Jae-Goo;Kim, Joo-Sik;Mun, Tae-Young
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • Air emission charge for nitrogen oxide as a precursor of fine dust has been introduced and implemented within the country from 2020. Therefore, the development of economical combustion technology for NOx reduction has got more needed urgently. This study investigated the air-staging effect as a way to reduce the NOx during combustion of domestic unused forest biomass, recently possible to secure REC (Renewable Energy Certification) as a substitute for overseas wood pellets in a 0.1 MWth circulating fluidized bed combustion test-rig. Operating conditions were comparison with and without air-staging, the supply position of tertiary air (6.4 m, 8.1 m, 9.4 m in the combustor) and variation of air-staging ratio (Primary air:Secondary air:Tertiary air=91%:9%:0%, 82%:9%:9%, 73%:9%:18%). NO and CO concentrations in flue gas, profiles of temperature and pressure at the height of the combustion, unburned carbon in sampled fly ash and combustion efficiency on operating conditions were evaluated. As notable results, NO concentration with air-staging application under tertiary air supply at 9.4 m in the combustor reduced 100.7 ppm compared to 148.8 ppm without air-staging while, CO concentration increased from 52.2 ppm without air-staging to 99.8 ppm with air-staging. However, among air-staging runs, when tertiary air supply amount at 6.4 m in the combustor increased by air-staging ratio (Primary air:Secondary air:Tertiary air=73%:9%:18%), NO and CO concentrations decreased the lowest 90.8 ppm and 66.1 ppm, respectively. Furthermore, combustion efficiency at this condition was improved to 99.3%, higher than that (98.3%) of run without air-staging.