• Title/Summary/Keyword: Flue-gas

Search Result 609, Processing Time 0.027 seconds

Optimization of the Design of Large Ducts with the Space Constraint in 500MW Power Plant (500MW 발전소에서 협소 공간 내 대형 덕트 설계의 최적화)

  • Hwang, Woo-Hyeon;Lee, Kyung-Ok;Cho, Yong-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.755-765
    • /
    • 2009
  • Some sections of the exhaust system to determine the shape of the duct is to suffer the difficulties by space constraints to install new equipment of the environment post-treatment for existing operation of the power plants. In this paper the large duct in flue gas desulfurization equipments of the 500MW coal-fired power plant on the current operation is numerically analyzed from induced draft fan exit to booster up fan inlet section which is in the narrow space of the exhaust system with four times bending and is connected to emergency duct to bypass the exhaust gas on the emergency operation. The procedure and method using computational fluid dynamics are proposed to maintain the stability of the guide vane with the uniform flow and a minimum pressure loss of exhaust gas in the case of normal and emergency operation between the direction of the flow of exhaust gas duct at different.

Simulation Study of NOx Dispersion from Power Plant Stack Gas (화력발전소 배출가스 중 질소산화물의 확산에 관한 연구)

  • Park, Mi-Jeong;Jo, Young-Min;Sung, Doo-Yong;Kim, Mi-Jeong;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.540-550
    • /
    • 2013
  • Various efforts have been explored to save the cost in many industrial fields. In order to recover the residual thermal energy from the flue gas, an extreme high efficiency heat exchanger is planning to install at a power plant. The gas temperature will be reduced to $40^{\circ}C$ from $115^{\circ}C$. Thus gas buoyancy decreases, and dispersion of nitrogen oxides is expected to deteriorate as increasing relative humidity. In this study, the conversion of nitrogen monoxide to nitrogen dioxide and dispersion regime are investigated through computational modeling. Nitrogen dioxide which indicates 0.1 ppm at 85 m from the ground could be propagated to 620 m at $115^{\circ}C$ of the flue gas, whilst when cooled down to $40^{\circ}C$, it expands up to 750 m. The ground level influence area showed more expansion of dispersion, approximately to 930 m.

Preparation of Asymmetric Folyethersulfone Hollow Fiber Membranes for Flue Gas Separation (온실기체 분리용 폴리이서설폰 비대칭 중공사 막의 제조)

  • Kim Jeong-Hoon;Sohn Woo-Ik;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.147-156
    • /
    • 2005
  • It is well-known that polyethersulfone (PES) has high $CO_2$ selectivity over $N_2\;(or\;CH_4)$ and excellent pressure resistance of $CO_2$ plasticization among muy commercialized engineering plastics[1-4]. Asymmetric PES hollow fiber membranes for flue gas separation were developed by dry-wet spinning technique. The dope solution consists of PES, NMP and acetone. Water and water/NMP mixtures are used in outer and inner coagulants, respectively. Gas permeation rate (i.e., permeance) and $CO_2/N_2$ selectivity were measured with pure gas, respectively and the micro-structure of hollow fiber membranes was characterized by scanning electron microscopy. The effects of polymer concentration, ratio of NMP to acetone, length of air gap, evaporation condition and silicone coating were investigated on the $CO_2/N_2$ separation properties of the hollow fibers. Optimized PES hollow fiber membranes exhibited high permeance of $25\~50$ GPU and $CO_2/N_2$ selectivity of $30\~40$ at room temperature and have the apparent skin layer thickness of about $0.1\;{\mu}m$. The developed PES hollow fiber membranes, would be a good candidate suitable for the flue gas separation process.

THE CONCENTRATION OF PCDD/FS IN FLUE GAS AND SOIL COLLECTED IN THE VICINITY OF VARIOUS INCINERATORS, KOREA

  • Kim, Kyoung-Soo;Kim, Kyeo-Keun;Kim, Jong-Guk
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.55-63
    • /
    • 2007
  • PCDD/Fs monitoring was carried out to estimate the contamination level in soil samples taken in the vicinity of the various incinerators throughout South Korea from July 2003 to December 2004. The levels ranged from N.D. to 130.39 pg I-TEQ/g (d.w.) with an average concentration of 11.38 pg I-TEQ/g (d.w.). The level of PCDD/Fs in this study is similar to that of other countries. Overall, the highest mean concentration in the soil was found at 250 m from the stack. In addition, the flue gases were analyzed in order to obtain the congener profiles of the PCDD/Fs emitted from the incinerators. The concentration of I-TEQ in the flue gas ranged from 0.33 to 21.5 ng TEQ/$Sm^3$. These levels were much lower than the concentration stipulated in the Korean emission criterion(40 ng TEQ/$Sm^3$ until 2005). The comparison of the congener patterns using cluster analysis showed that the incinerators and PCP are sources of PCDD/Fs in the soil samples according to the sampling point, but the possibility of unidentified combustion sources and vehicles exists in the case of complex industrial regions.

Biological Removal of Nitrogen Oxides from Combustion Flue Gases (연소배가스 중 질소산화물(NOx) 제거를 위한 생물학적 기술)

  • Lee, Ki-Say
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.243-251
    • /
    • 2010
  • Nitrogen oxides (NOx) in combustion flue gas are currently mitigated by chemical processes such as catalytic reduction, absorption and adsorption. However, development of environmentally sustainable biological processes is necessary in the near future. In this paper, the up-to-dated R&D trend of biological methodologies regarding NOx removal was reviewed, and their advantages and disadvantages were discussed. The principles and applications of bacterial system including nitrification and denitrification and photosynthetic microalgae system were compared. In order to enhance biological treatment rate and performance, the insoluble nitric oxide (NO) should be first absorbed using a proper solubilization agent, and then microbial degradation or fixation is to be followed. The use of microalgal system has a good prospect because it can fix $CO_2$ and NOx simultaneously and requires no additional carbon for energy source.

분리막을 이용한 이산화탄소 분리

  • 이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.03a
    • /
    • pp.97-112
    • /
    • 1994
  • 이산화탄소의 분리회수가 필요한 공정은 지금까지 천연가스정제, 암모니아 제조시 수소정제, 매립지 가스, Enhanced oil recovery (EOR), Bio 가스정제 등이 있었으며 최근에는 지구온난화의 주원인인 CO$_{2}$를 배출가스(Flue gas)부터 분리하는 것이 중요한 과제로 대두되고 있다. 본 논문에서는 지구협약에 의해 방출규제가 따를것으로 예상되는 Flue gas에 포함된 CO$_{2}$의 배출제어를 중심으로 분리막을 이용한 이산화탄소 분리회수 기술을 살펴보고자 한다.

  • PDF

Membrane seperation of Carbon Dioxide (분리막을 이용한 이산화탄소 분리)

  • 이규호
    • Membrane Journal
    • /
    • v.4 no.2
    • /
    • pp.78-84
    • /
    • 1994
  • 이산화탄소의 분리회수가 필요한 공정은 지금까지 천연가스정제, 암모니아 제조시 수소정제, 매립지 가스, Enhanced oil revovery (EOR), Bio 가스정제 등이 있었으며, 최근에는 지구온난화의 주원인인 $CO_2$를 배출가스(Flue gas)로부터 분리하는 것이 중요한 과제로 대두되고 있다. 본 논문에서는 지구협약에 의해 방출규제가 따를 것으로 예상되는 Flue gas에 포함된 $CO_2$의 배출제어를 중심으로 분리막을 이용한 이산화탄소 분리회수기술을 살펴보고자 한다.

  • PDF

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열회수성능 분석)

  • 서원명;윤용철;강종국
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.212-222
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. The experimental heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas flue, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amounts by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air tubes and exhaust air passages crossing the tubes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through flue.

  • PDF

Nitrate Removal of Flue Gas Desulfurization Wastewater by Autotrophic Denitrification

  • Liu, L.H.;Zhou, H.D.;Koenig, A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.46-52
    • /
    • 2007
  • As flue gas desulfurization (FGD) wastewater contains high concentrations of nitrate and is very low in organic carbon, the feasibility of nitrate removal by autotrophic denitrification using Thiobacillus denitrificans was studied. This autotrophic bacteria oxidizes elemental sulfur to sulfate while reducing nitrate to elemental nitrogen gas, thereby eliminating the need for addition of organic compounds such as methanol. Owing to the unusually high concentrations of dissolved salts $(Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+,\;B^+,\;SO_4^{2-},\;Cl^-,\;F^-,)$ in the FGD wastewater, extensive laboratory-scale and pilot-scale tests were carried out in sulfur-limestone reactors (1) to determine the effect of salinity on autotrophic denitrification, (2) to evaluate the use of limestone for pH control and as source of inorganic carbon for microbial growth, and, (3) to find the optimum environmental and operational conditions for autotrophic denitrification of FGD wastewater. The experimental results demonstrated that (1) autotrophic denitrification is not inhibited up to 1.8 mol total dissolved salt content; (2) inorganic carbon and inorganic phosphorus must be present in sufficiently high concentrations; (3) limestone can supply effective buffering capacity and inorganic carbon; (4) the high calcium concentration may interfere with pH control, phosphorus solubility and limestone dissolution, hence requiring pretreatment of the FGD wastewater; and, 5) under optimum conditions, complete autotrophic denitrification of FGD wastewater was obtained in a sulfur-limestone packed bed reactor with a sulfur:limestone volume ratio of 2:1 for volumetric loading rates up to 400g $NO_{3^-}N/m^3.d$. The interesting interactions between autotrophic denitrification, pH, alkalinity, and the unusually high calcium and boron content of the FGD wastewater are highlighted. The engineering significance of the results is discussed.

  • PDF