• Title/Summary/Keyword: Flowrate monitoring

Search Result 29, Processing Time 0.024 seconds

Reducing the Non Grinding Time in Grinding Operations(1st Report) -Reducing the Air Grinding time using Sound Sensor- (연삭가공에 있어 비가공 시간 단축에 관한 연구(I) -음향센서를 이용한 공연삭 시간의 단축-)

  • KIM, Sun Ho;AHN, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.85-91
    • /
    • 1997
  • Air grinding time in grinding process has a great effect on its efficiency due to low feedrate. This paper presents a reduction methos of air grinding time in cylindrical plunge grinding operation. Tje reduction of air grinding time is accomplished by finding the distance between contact point and rising point of ultra- sonic signal of the grinding wheel to workpiece. It uses a variation of sound signal generated by the flow of coolant when the grinding wheel approaches to workpiece. The ultrasonic sensor with 23 kHz center fre- quency and 8 kHz bandwidth is used to find the nearest approaching point(NAP). Monitoring and control system of the grinding conditions is implemented with CNC controller to control feedrate override and ultrasonic sensor to find NAP. The experimental result shows that the ultrasonic signal is a good measure- ment to find NAP. But it needs the considerations for the effect of the relationship between flowrate of coolant and diameter of workpiece.

  • PDF

Estimation of Ecological Flow and Habitat Suitability Index at Jeonju-Cheon Upstream (전주천 상류부의 서식처 적합도 지수 및 생태유량 산정)

  • Kim, Kyeoung-Oh;Park, Young-Ki;Kang, Jae-Il;Lee, Byung-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.47-55
    • /
    • 2016
  • In this study, WUA (Weighted Usable Area) based on the Instream Flow Incremental Methodology (IFIM) was calculated to determine ecological flow at JeonJu-Cheon by using River2D model. To calibrate River2D, simulation results for low flow conditions of River2D were compared with calibrated HEC-RAS simulation results and the optimum parameters were determined. The results were RMSE (0.18), NSE (0.71) and coefficient of determination (0.78) for velocity and RMSE (0.02), NSE (0.71), coefficient of determination (0.73) for water depth. The result shows that the model successfully simulates the water flows. A selected target fish species to build the habitat suitability index were composed of Zaccoplatypus and Coreoleuciscus splendidus. These species showed the highest occurrences over the past decade in f ish monitoring. Also, The WUA-Discharge curve was calculated with the suitability index in a medium flow conditions. From the result, WUA is changed according to flowrate. In the flowrate-WUA/A graph, ecological flow can be determined at $1.8{\sim}2.0m^3/s$ for Zaccoplatypus $2.0m^3/s$ and Coreoleuciscus splendidus $1.8m^3/s$ at JeonJu-Cheon upstream. When compared with flow-duration analysis, it is demonstrative that simulation results fitted ecological flow considering quantity of available habitat for each fish species.

Fish Community and Estimation of Optimal Ecological Flowrate in Up and Downstream of Hoengseong Dam (횡성댐 상·하류의 어류군집 구조와 최적 생태유량 산정)

  • Hur, Jun-Wook;Kang, Hyoeng-Sik;Jang, Min-Ho;Lee, Jeong-Yeol
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.925-935
    • /
    • 2013
  • In this study, a comprehensive field monitoring was conducted to understand habitat conditions of fish species in up and downstream of Hoengseong Dam. Based on the monitoring data, riverine health conditions such as composition ratio of fish species, bio-diversity (dominance index, diversity, evenness and richness), index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI) were assessed, and optimal ecological flowrates (OEF) were estimated using the habitat suitability indexes (HSI) established for three fish species Coreoleuciscus splendidus, Pungtungia herzi and Microphysogobio longidorsalis selected as icon species using the physical habitat simulation system (PHABSIM). The total number of species sampled was 20 species, and two species of Zacco platypus (30.4%) and C. splendidus (20.9%) dominated the fish community. As a result, it was revealed that IBI and QHEI values decreased from upstream to downstream along the river. The estimated IBI value ranged from 24 to 36 with average being 30.9 out of 50, rendering the site ecologically fair to good health conditions. HSI for C. splendidus were determined according to three different month in terms of season: Spring (April), Summer (August) and Autumn (October). HSI for flow velocity were estimated at 0.7 to 0.8 m/s for the Spring, 0.5 to 1.0 m/s for the Summer and 0.8 to 0.9 m/s for the Autumn. HSI for water depth were estimated at 0.3 to 0.5 m for the Spring; 0.3 to 0.5 m for the Summer; and 0.3 to 0.4 m for the Autumn. OEF was estimated at 4.2 and $6.5m^3/s$ for the Spring and Autumn, and $12.0m^3/s$ for the Summer. Overall, it was concluded that the Hoengseong Dam has been relatively well protected from the anthropogenic disturbance for the legally protected species including the endemic species studied in this study.

Sewer Decontamination Mechanism and Pipe Network Monitoring and Fault Diagnosis of Water Network System Based on System Analysis (시스템 해석에 기초한 하수관망 오염 매카니즘과 관망 모니터링 및 이상진단)

  • Kang, OnYu;Lee, SeungChul;Kim, MinJeong;Yu, SuMin;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.980-987
    • /
    • 2012
  • Nonpoint source pollution causes leaks and overtopping, depending on the state of the sewer network as well as aggravates the pollution load of the aqueous water system as it is introduced into the sewer by wash-off. According, the need for efficient sewer monitoring system which can manage the sewage flowrate, water quality, inflow/infiltration and overflow has increased for sewer maintenance and the prevention of environmental pollution. However, the sewer monitoring is not easy since the sewer network is built in underground with the complex nature of its structure and connections. Sewer decontamination mechanism as well as pipe network monitoring and fault diagnosis of water network system on system analysis proposed in this study. First, the pollution removal pattern and behavior of contaminants in the sewer pipe network is analyzed by using sewer process simulation program, stormwater & wastewater management model for expert (XP-SWMM). Second, the sewer network fault diagnosis was performed using the multivariate statistical monitoring to monitor water quality in the sewer and detect the sewer leakage and burst. Sewer decontamination mechanism analysis with static and dynamic state system results showed that loads of total nitrogen (TN) and total phosphorous (TP) during rainfall are greatly increased than non-rainfall, which will aggravate the pollution load of the water system. Accordingly, the sewer outflow in pipe network is analyzed due to the increased flow and inflow of pollutant concentration caused by rainfall. The proposed sewer network monitoring and fault diagnosis technique can be used effectively for the nonpoint source pollution management of the urban watershed as well as continuous monitoring system.

Development of an Automated Control System for Bioreactor using the Plant Tissue Culture (식물조직배양용 바이오리액터의 농도제어 시스템 개발)

  • Chung, Seok-Hyun;No, Daehyun;Kang, Changho;Kang, Sukwon;Han, Bong-Hee;Lee, Gee-Myung;Na, Young-Sun
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.307-312
    • /
    • 2004
  • The bioreactor system for the large-scale plant tissue culture was developed to control the pH concentration and DO (dissolved oxygen), and air flowrate. The system controlling the proper air flow rate for each bulblet growth stage and monitoring the contamination of bioreactor using the pH change was controled by computer program. For the uniform bulblet distribution in bioreactor, the proper air flow rate was 300 cc/min at the beginning of bulblet culture, 400 cc/min after 20 days, 500 cc/min after 40 days, 600 cc/min after 60days, and 700 cc/min after 80 days. It was possible to maintain the pH concentration within 5.5$\pm$0.5 during the culture by control system of bioreactor.

A Study on Monitoring of Flowrate Variation in Stagnant Controled River using ADCP (ADCP를 활용한 정체성 조절하천의 유량변화 모니터링 연구)

  • Kim, Jae-Dong;Kim, Young-Do;Lyu, Si-Wan;Seo, Il-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.921-925
    • /
    • 2007
  • 하천의 유량자료는 수위, 우량 등과 함께 수문 해석을 위해 매우 중요하다. 유량자료는 수자원을 정확하게 파악하기 위해 가장 중요한 자료이기 때문에 측정을 위해 많은 노력을 기울이고 있다. 그러나 유량측정은 다른 수문관측과는 달리 변동성이 크고 오차의 범위가 커서 실제 활용에 많은 한계가 있는 것도 사실이다. 유량은 유속계를 이용하여 현장에서 인력으로 직접 측정되기 때문에 현장의 측정조건, 측정하는 사람의 기술적 숙련도 등에 따라 크게 변화할 수 있는 요소를 가지고 있다. 또한 유량자료는 대부분의 경우 연속적인 자료획득이 곤란하기 때문에 수위-유량관계를 이용하여 연속측정된 수위를 유량으로 환산한다. 이와 같은 수위-유량관계는 현장의 조건이 변화하지 않는다는 가정하에서 이루어지는 것이므로 실제 현장에서 발생하는 변화를 고려할 수 없는 한계가 있다. 본 연구에서 유량 모니터링 대상인 서낙동강은 정체수역으로서 하천의 상류와 하류에 대저수문과 녹산수문이 위치해 있고, 두 수문의 개방시 일정시간 동안의 연속적이고 정확한 유량변화의 측정을 필요로 한다. 서낙동강은 녹산수문에서 바다와의 수위차를 고려하여 수문을 개방하기 때문에 대저수문과 녹산수문의 개방 시기 및 시간이 매 순간 유동적이다. 본 연구에서는 서낙동강의 수질 및 수량 관리를 위하여 수문운영에 따른 유량변화를 측정하고자 하였으며, 전술한 바와 같은 한계를 극복하기 위해 유량측정장비는 최첨단 장비인 ADCP를 활용하였다. ADCP(Accoustic Doppler Current Profiler)는 최근에 하천유량측정을 위해 활용되고 있는 장비로서 음파의 도플러 효과를 이용하여 하천을 횡단하면서 단시간에 유속과 유량을 측정한다. 국내의 경우 1990년대 후반부터 도입된 ADCP는 유량측정 기법과 현장 적용상의 문제가 일정부분 검토되고 있다. 본 연구에서는 기존의 유속계를 이용해서 측정한 유량값과 비교하여 ADCP에 의한 결과를 검증하고, 수문운영에 따른 비정상 유량변화를 모니터링하고자 하였다.

  • PDF

Water Quality Improvement Plans based on the Analysis of Pollutant Discharge Characteristics and Water Quality Modelling of Seokmun Reservoir Watershed (석문호 유역 오염물질 배출특성 분석 및 수질모델링에 기초한 수질개선방안 연구)

  • Choi, Moojin;Jung, Woohyeuk;Choi, Jaehun;Kim, Youngil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.581-590
    • /
    • 2017
  • For effective improvement of water quality in Seokmun reservoir, this study implemented various analyses including the tributary water quality and flowrate monitoring, contamination of sediment, investigation of pollution source, selection of priority management target tributary by stream grouping method. The COD concentration of the majority of tributaries in Seokmun reservoir watershed was relatively higher than BOD concentration. The concentration of water pollutants regardless of water quality parameters in Yeokcheon, Dangjincheon, Sigokcheon, Baekseokcheon, small stream in Jinkwanri and Janghangri were higher than the other tributaries. The pollution sources in the Seokmun reservoir watershed were mostly distributed in the population, livestock, and industry. The pollutants, which located in Yeokcheon, Dangjincheon, Baekseokcheon, and small stream in Janghangri selected as priority management target tributary, should be preferentially reduced for improving the water quality in Seokmun reservoir. As the evaluation results of water quality in Seokmun reservoir for the effect of water quality improvement according to various scenarios using water quality model, it was found that the water quality in Seokmun reservoir due to the construction of a wastewater treatment plant for management of pollutants in the watershed would be satisfied the class V of water environment standard in reservoir.

Assessment of Ecological Flowrate and Fish Community to Weir Type in Stream (하천에서 보 형태에 따른 어류군집 구조 및 생태유량 평가)

  • Hur, Jun Wook;Jang, Chang Lae;Kim, Kyu Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.339-347
    • /
    • 2017
  • The objectives of this study were to analyze ecological characteristics of fish compositions and estimate the optimal ecological flow using the physical habitat simulation system (PHABSIM) in Wonju stream and Boseong river. We sampled fishes using two gears such as casting net and kicknet to determine fish distribution and also measured flow velocity, water depth, bed material at the point where fish collected. Total number of species and individuals sampled were 20 and 2,104, respectively and dominant species was Zacco platypus (39.7%) and subdominant species was Z. koreanus (RA: 15.8%) in Wonju stream. In Boseong river, collected fishes were 1,638 individuals, 28 species. Dominant and sub-dominant species was Z. platypus (RA: 22.0%) and Microphysogobio yaluensis (RA: 17.2%), respectively. For calculating habitat suitability index (HSI), we selected Z. platypus as representative fish species and analyzed water depth and flow velocity. Water depth and flow velocity were 0.2-0.6 m, 0.1-0.3 m/s, respectively in Wonju stream and 0.3-0.6 m, 0-0.3 m/s, respectively in Boseong river. According to the analysis of ecological flow simulation, optimal flow was 1.1 cms and 0.3 cms in Wonju stream and 0.4cms, 2.2cms in Boseong river at up and down stream respectively. WUA (Weighted Usable Area) was 9.5%, 26.6% in Wonju stream and 34.8%, 53.3% in Boseong river at up and down stream respectively.

Evaluation of Pollutants Concentrations and Runoff Characteristics in Highway Rest Area (국내 고속도로 휴게소지역 비점오염원 유출특성 분석)

  • Kim, Jeong-Hyun;Kang, Hee-Man;Ko, Seok-Oh
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.131-137
    • /
    • 2010
  • The stormwater runoff from rest areas in highways are known as more polluted compared to highways because of more vehicle activities. This study is performed to find pollutant characteristics in the rest areas in the magnitude of statistical pollutant concentrations during storms. Washoff characteristics of pollutants from rest areas by monitoring of rainfall, runoff rate and runoff samples were evaluated. High concentrations of pollutants in runoff were observed at the beginning of runoff and rapid decrease thereafter, indicating that first-flush effects are clearly occurred. Event Mean Concentrations(EMCs) of TSS, COD, TN, and TP are estimated to be in the range of 31.04-127.11mg/L, 35.5-369.5mg/L, 2.62-9.86 mg/L, and 0.53-1.96mg/L, respectively. Heavy metals in runoff showed relatively high values, possibly due to the abrasion of brake pad or tire while cars are slowly moving for parking. EMCs of total Pb, total Cu, and total Ni are in the range of $1206-16293{\mu}g/L$, $237-7906{\mu}g/L$, and $53-6372{\mu}g/L$, respectively. Pollutant loading per rest area calculated by using EMC, flowrate and target area is also described for each pollutant.