• Title/Summary/Keyword: Flow-through Cell

Search Result 642, Processing Time 0.032 seconds

Natural convection induced by free surface heat flux and temperature difference between left and right walls in glass melting furnace (유리용융로에서 자유표면 열유속과 좌우벽면 온도차에 의한 자연대류)

  • Im, Gwang-Ok;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3706-3713
    • /
    • 1996
  • A numerical study on natural convection induced by free surface heat flux and cold left and hot right walls in glass melting furnaces has been performed. A function of heat flux derived from the combustion environments of actual glass melting furnace is applied to thermal boundary condition at free surface. Fundamentally there exist two flow cells in cavity (left counterclockwise one and right clockwise one). The effects of heat flux and Rayleigh number are investigated through two-dimensional steady-state assumption. The convection strength of two flow cell located in left region continuously increases. In the mean time the strength of flow cell in right region increases and then decreases. Critical Rayleigh number in which two flow cells take place above and below show linear dependence on the free surface heat flux. To maintain the traditional flow pattern (left and right flow cells) in glass melting furnace, Rayleigh number is recommended to be below 10$^{5}$ .

In-vitro Study on Hemorheological Behaviors of Blood Flow Through a Micro Tube (미세튜브 내부를 흐르는 혈액유동의 유변학적 특성에 대한 in-vitro 연구)

  • Kang, Myung-Jin;Ji, Ho-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.99-105
    • /
    • 2010
  • In order to obtain velocity profile of blood flow with high spatial resolution, a micro PIV technique consisted of a fluorescent microscope, double-pulsed YAG laser, cooled CCD camera was applied to in-vitro blood flow experiment through a micro round tube of a diameter $100{\mu}m$. Velocity distributions of blood flow for rabbit were obtained. The viscosity profiles for shear rate were found at flowing condition. To provide hemorheological characteristics of blood flow, the viscosities for shear rate were evaluated. The viscosity of blood also steeply increase by decreasing shear rate resulting in Non-Newtonian flow, especially in low shear rate region caused by RBC rheological properties. The results show typical characteristics of Non-Newtonian characteristics from the results of velocity profile and viscosity for blood flow. From the inflection points, cell free layer and two-phase flow consisted with plasma and suspensions including RBCs can be separated.

Optimal Sizing of the Manifolds in a PEM Fuel Cell Stack using Three-Dimensional CFD Simulations (3차원 CFD 시뮬레이션을 활용한 고분자전해질 연료전지 스택의 매니폴드 크기 최적화)

  • Jeong, Jeehoon;Han, In-Su;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.386-392
    • /
    • 2013
  • Polymer electrolyte membrane (PEM) fuel cell stacks are constructed by stacking several to hundreds of unit cells depending on their power outputs required. Fuel and oxidant are distributed to each cell of a stack through so-called manifolds during its operation. In designing a stack, if the manifold sizes are too small, the fuel and oxidant would be maldistributed among the cells. On the contrary, the volume of the stack would be too large if the manifolds are oversized. In this study, we present a three-dimensional computational fluid dynamics (CFD) model with a geometrically simplified flow-field to optimize the size of the manifolds of a stack. The flow-field of the stack was simplified as a straight channel filled with porous media to reduce the number of computational meshes required for CFD simulations. Using the CFD model, we determined the size of the oxidant manifold of a 30 kW-class PEM fuel cell stack that comprises 99 cells. The stack with the optimal manifold size showed a quite uniform distribution of the cell voltages across the entire cells.

Characteristics of Rotating Stall in a Centrifugal Compressor with Vaned Diffuser (원심압축기 베인 디퓨저에서의 선회실속 특성)

  • Lee, Du-Yeol;Kang, Chang-Sik;Shin, You-Hwan;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.42-48
    • /
    • 2002
  • In this study, the instability of a centrifugal compressor with vaned diffuser was investigated. During unstable operation of the test compressor, pressure fluctuations at different diffuser radius ratios were measured by using high frequency pressure transducers. Two different types of stall, mild and deep stalls, were observed alternately and irregularly at some flow rates where the compressor performance was steeply deteriorated. In this transient zone, the size of rotating stall cell was estimated through the wavelet transform analysis. It was about 45 percents of rotor circumferential space at 300 rpm and not dependent on flow rate.

Characteristics of Rotating Stall in a Centrifugal Compressor with Vaned Diffuser (원심압축기 베인 디퓨저에서의 선회실속 특성)

  • Lee, Du-Yeol;Kang, Chang-Sik;Shin, You-Hwan;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.99-105
    • /
    • 2001
  • In this study, the instability of a centrifugal compressor with vaned diffuser was investigated. During unstable operation of the test compressor, pressure fluctuations at different diffuser radius ratios were measured by using high frequency pressure transducers. Two different types of stall, mild and deep stall, were observed alternately and irregularly at some flow rate where the compressor performance was steeply deteriorated. In this transient zone, the size of rotating stall cell was estimated through the Wavelet transform analysis. It was about 45 percents of rotor circumferential space at 3000 rpm and not dependent on flow rate.

  • PDF

NUMERICAL STUDY OF MULTIPLE DROPLET DYNAMICS IN A PEMFC AIR FLOW CHANNEL (고분자전해질막 연료전지의 공기유로 내에서의 다중 액적 거동에 대한 수치적 연구)

  • Choi, J.Y.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.159-164
    • /
    • 2009
  • The water droplet motion and the interaction between the droplets in a PEMFC air flow channel with multiple pores, through which water emerges, is studied numerically by solving the equations governing the conservation of mass and momentum. The liquid-gas interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface. The method is modified to implement the contact angle conditions on the walls and pores. The dynamic interaction between the droplets growing on multiple pores while keeping the total water flow rate through pores constant is investigated by conducting the computations until the droplet motion exhibits a periodic pattern. The numerical results show that the droplet merging caused by increasing the number of pores is not effective for water removal and that the contact angle of channel wall strongly affects water management in the PEMFC air flow channel.

  • PDF

Development of PZT Piezoelectric Biosensor for the Detection of Formaldehyde (Formaldehyde 측정을 위한 PZT 압전 바이오센서 개발)

  • 김병옥;곽성곤;임동준
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.477-482
    • /
    • 1998
  • A biosensor with PZT piezoelectric ceramic crystal was developed for the detection of formaldehyde gas. Poled PZT piezoelectric ceramic disk was made from ZrO2, TiO2 and Nb2O5, together with the addition of PbO and polyvinyl alcohol, through various processes of mixing, calcination drying, crushing, forming, sintering, polishing, ion coating and poling. Oscillator circuit of sensor was made of operational amplifier(AD811AN). Formaldehyde dehydrogenase was immobilized onto a piezoelectic ceramic crystal, together with the cofactors, reduced glutathione and nicotinamide adenine dinucleotide. The effect of flow rate on the sensitivity was determined by varing the flow rate of carrier gas from 24.7mL/min to 111.7mL/min through detector cell. The results indicated that as the flow rate was increased, the recovery rate was increased. And a significant increase in the sensitivity was observed in enhanced flow rate of carrier gas. Frequency difference(ΔF) of immobilized PZT piezoelectic disk increased proportionally to the concentration gas and reproduced to repeated exposures of formaldehyde gas(28ppm, Δ68Hz).

  • PDF

The Characteristics Evaluation of the Gas Diffusion Layer for a PEM Fuel Cell by Computational Fluid Dynamics (CFD 해석을 이용한 PEMFC 용 기체확산층의 특성평가)

  • Kim B.H.;Choi J.P.;Jeon B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.207-210
    • /
    • 2005
  • In this paper, a two-dimensional cross-channel model was applied to investigate influence of the gas diffusion layer(GDL) property and flow field geometry in the anode side for proton exchange membrane fuel cell(PEMFC). The GDL is made of a porous material such as carbon cloth, carbon paper, or metal wire mesh. To the simplicity, the GDL is represented as a block of material containing numerous pathways through which gaseous reactants and liquid water can pass. The purpose of present work was to study the effect of the GDL thickness and the porosity, and flow field geometry by computational fluid dynamics(CFD)

  • PDF

Effects of CELL curriculum participation on college students' learning flow, learning motivation, academic self-efficacy, and self-directed learning ability (CELL교육과정 참여가 대학생의 학습몰입, 학습동기, 학업적자기효능감, 자기주도학습능력에 미치는 효과)

  • Yang, Jae-Hoon;Cho, Bo-Ram;Hwang, In-Seob
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.55-67
    • /
    • 2020
  • The purpose of this study was to investigate the effects of CELL curriculum participation on learning flow, learning motivation, academic self-efficacy, and self-directed learning ability. To this end, in the first semester of 2020, 386 students from K University conducted a pre-post survey and analyzed using SPSS. The main research results are as follows. First, participation in the CELL curriculum showed statistically significant improvement in the student's learning flow, learning motivation, academic self-efficacy, and self-directed learning ability. Second, the analysis by gender showed significant improvement in learning flow, academic self-efficacy, and self-directed learning ability only for female students. Third, in the analysis by grade level, the sophomore showed significant improvement in learning flow and self-directed learning ability, the junior in all variables, and the senior in academic self-efficacy and self-directed learning ability. Fourth, participation impressions and improvements were summarized through interviews of participating students. This study is significant in that it examines the effectiveness of the CELL curriculum and suggests practical measures for systematic operation and support.

In-vitro Tests of Topical Skin Protectants using a Flow-Through Diffusion Cell System Containing Excised Hairless Mouse Skin (생체 피부조직을 이용한 피부보호제 in-vitro 시험평가)

  • Lee, Eun Young;Choi, Hoo Kyun;Kim, Sang Woong;Seo, Dong Sung;Joe, Hae Eun;Yu, Chi Ho;Kim, Chang Hwan;Cho, Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.434-442
    • /
    • 2022
  • Highly toxic chemical warfare agents(CWA) could be used in chemical warfare and terrorism. The protection of skin is crucial for civilians and soldiers, because the primary routes of exposure to CWA are inhalation and skin absorption. Thus, topical skin protectants(TSP) have been studied and developed in many countries to complement protective equipments. In this study, in-vitro test procedure was optimized and established using a flow-through diffusion cell system containing excised hairless mouse skin in an attempt to assess the effectiveness of various TSP formulations against nerve agent simulants. In addition, the test results on the formulations including the ingredients used in SERPACWA(Skin Exposure Reduction Paste Against Chemical Warfare Agent) and IB-1(TSP of Israel) were included, indicating that the formulations with perfluorinated compounds were more effective than the glycerin-based formulations.