• Title/Summary/Keyword: Flow-field configuration

Search Result 181, Processing Time 0.028 seconds

Effect of Chamber Configuration on Combustion Characteristic Velocity of Full-scale Combustion Chamber (실물형 연소기의 형상에 따른 연소특성속도 비교)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.149-152
    • /
    • 2008
  • Effects of chamber configuration on combustion characteristic velocity of full-scale combustion chamber for 30-tonf-class liquid rocket engine were studied. The configurations of combustion chamber are ablative and channel cooling chamber (${\varepsilon}$=3.2) which have detachable mixing head, and single body regenerative cooling chamber which has nozzle expansion ratio of 3.5 and 12, respectively. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/s, and the injectors of all combustion chamber have recess number 1.0 and double-swirl characteristics. The hot firing test results at design point show that the combustion characteristic velocity of the regenerative cooling chamber which has nozzle expansion ratio of 12 is higher than that of other combustion chambers. The reasons for the above result are the increases of combustion pressure and enthalpy of kerosene which is heated due to cooling of the chamber wall before injection into the combustion field.

  • PDF

Macroscopic Visualization of Diesel Sprays with respect to Nozzle Hole Numbers and Injection Angles (분공수와 분사각의 영향에 따른 거시적 디젤 분무 가시화)

  • Yongjin Jung;Jinyoung Jang;Choongsik Bae
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 2024
  • Macroscopic visualization of non-evaporating sprays was experimentally conducted to investigate spray tip penetration and spray angle under low-density conditions, corresponding to an early injection strategy. Furthermore, injectors with varying injection angles (146° and 70°) and numbers of holes (8 and 14) were employed to examine the impact of injector configuration. Compared to the baseline injector, 8H146, which has 8 holes and a 146° injection angle, the spray tip penetration of the 8H70 injector was found to be longer. This can be attributed to higher momentum due to a smooth flow field between the sac volume and the nozzle inlet, which is located closer to the injector tip centerline. The increase in velocity led to intense turbulence generation, resulting in a wider spray angle. Conversely, the spray tip penetration of the 14H70 injector was shorter than that of the 8H70 injector. The competition between increased velocity and decreased nozzle diameter influenced the spray tip penetration for the 14H70 injector; the increase in momentum, previously observed for the 8H70 injector, contributed to an increase in spray tip penetration, but a decrease in nozzle diameter could lead to a reduction in spray tip penetration. The spray angle for the 14H70 injector was similar to that of the 8H146 injector. Moreover, injection rate measurements revealed that the slope for a narrow injection angle (70°) was steeper than that for a wider injection angle during the injection event.

Thin Film Transistor Characteristics with ZnO Channel Grown by RF Magnetron Sputtering (RF Magnetron Sputtering으로 증착된 ZnO의 증착 특성과 이를 이용한 Thin Film Transistor특성)

  • Kim, Young-Woong;Choi, Duck-Kyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.15-20
    • /
    • 2007
  • Low temperature processed ZnO-TFTs on glass below $270^{\circ}C$ for plastic substrate applications were fabricated and their electrical properties were investigated. Films in ZnO-TFTs with bottom gate configuration were made by RF magnetron sputtering system except for $SiO_2$ gate oxide deposited by ICP-CVD. ZnO channel films were grown on glass with various Ar and $O_2$ flow ratios. All of the fabricated ZnO-TFTs showed perfectly the enhancement mode operation, a high optical transmittance of above 80% in visible ranges of the spectrum. In the ZnO-TFTs with pure Ar process, the field effect mobility, threshold voltage, and on/off ratio were measured to be $1.2\;cm^2/Vs$, 8.5 V, and $5{\times}10^5$, respectively. These characteristic values are much higher than those of the ZnO-TFTs of which ZnO channel layers were processed with additional $O_2$ gas. In addition, ZnO-TFT with pure Af process showed smaller swing voltage of 1.86v/decade compared to those with $Ar+O_2$ process.

  • PDF

Development of a CFD Model to Study Ventilation Efficiency of Mechanically Ventilated Pig House (강제환기식 돈사의 환기 효율성 분석을 위한 CFD 모델 개발)

  • Seo, Il-Hwan;Lee, In-Bok;Hong, Se-Woon;Hwang, Hyun-Seob;Bitog, Jessie Pascul;Yoo, Jae-In;Kwon, Kyung-Suk;Ha, Tae-Hwan;Kim, Hyeon-Tae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.1
    • /
    • pp.25-37
    • /
    • 2008
  • When livestock facilities in Korea have been changed larger and denser, rearing conditions have been getting worse and the productivity of animal production have been decreased. Especially in the cold season, the minimized ventilation has generally been operated to save energy cost in Korea resulting in very poor environmental condition and high mortality. While the stability, suitability, and uniformity of the rearing condition are the most important for high productivity, the ventilation configuration is the most important to improve the rearing condition seasonally. But, it is so difficult to analyze the internal air flow and the environmental factors by conducting only field experiment because the weather condition is very unpredictable and unstable as well as the structural specification can not be easily changed by the researchers considering cost and labor. Accordingly, an aerodynamic computer simulation was adopted to this study to overcome the weakness of conducting field experiment and study the aerodynamic itself. It has been supposed that the airflow is the main mechanism of heat, mass, and momentum transfers. To make the simulation model accurately and actually, simplified pig models were also developed. The accuracy of the CFD simulation model was enhanced by 4.4 % of errors compared with the data collected from field experiments. In this paper, using the verified CFD model, the CFD computed internal rearing condition of the mechanically ventilated pig house were analyzed quantitatively as well as qualitatively. Later, this developed model will be computed time-dependently to effectively analyze the seasonal ventilation efficiency more practically and extensively with tracer gas decay theory.

NUMERICAL AERODYNAMIC ANALYSIS OF A TRANSONIC COMMERCIAL AIRPLANE ACCORDING TO THE ANGLE OF ATTACK AND MACH NUMBER (천음속 여객기의 받음각과 마하수에 따른 공력 해석)

  • Kim, Y.K.;Kim, S.C.;Choi, J.W.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.66-71
    • /
    • 2008
  • This research computes the viscous flow field and aerodynamics around the model of a commercial passenger airplane, Boeing 747-400, which cruises in transonic speed. The configuration was realized through the reverse engineering based on the photo scanning measurement. In results, the pressure coefficients at the several wing section on the wing surface of the airplane was described and discussed to obtain the physical meaning. The lift coefficient increased almost linearly up to $17^{\circ}$. Here the maximum lift occurred at $18^{\circ}$ according to the angle of attack. And the minimum drag is expected at $-2^{\circ}$. The maximum lift coefficient occurred at the Mach number 0.89, and the drag coefficient rapidly increased after the Mach number of 0.92. Also shear-stress transport model predicts slightly lower aerodynamic coefficients than other models and Chen's model shows the highest aerodynamic values. The aerodynamic performance of the airplane elements was presented.

Analysis of Domestic Water Consumption Characteristics for Water Usage Purpose (가정용수의 사용 목적별 소비경향 특성분석)

  • Choi, Sun-hee;Son, Mi-na;Kim, Sang-hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.23-29
    • /
    • 2008
  • Throughout the analysis of field data from water distribution system, valid parameters were determined that can be included in the water service and design plan. This study investigates water consumption patterns to understand the variation of water-demand structures utilizing the pattern analysis of domestic purpose water. Water use data were collected by a public water resources management firm in Korea, Kwater, for 140 houses monitored during three years. Flow meters were installed at the faucet for drinking water, the shower booth, the laundry machine, bathroom sink, toilet, and garden faucet. Data was filtered using multiple physically meaningful criteria to improve analysis credibility. Mann Kendall and Spearman's Rho tests were used to carry out the analysis. Distinct factors of water consumption patterns can be determined for both increasing and decreasing trends of water use. Throughout the data analysis, the characterization of terms was classified and analyzed by the condition of the location of water-demand. Analysis of this data provide a physical basis for the parameter configuration of a reasonable design for a domestic water demand prediction model.

Effects of Injection Pressures on Combustion and Emissions in a Direct Injection LPG Spark Ignition Engine (적접분사식 LPG엔진에서 연료분사압력이 연소/배기특성에 미치는 영향 연구)

  • Lee, Seok-Whan;Cho, Jun-Ho;Oh, Seung-Mook
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • High pressure LPG fuel spray with a conventional swirl injector was visualized and the impact of the injection pressure was also investigated using a DISI (direct injection spark ignition) LPG single cylinder engine. Engine performance and emission characteristics were evaluated over three different injection pressure and engine loads at an engine speed of 1500 rpm. The fuel spray pattern appeared to notably have longer penetration length and narrower spray angle than those of gasoline due to its lower angular momentum and rapid vaporization. Fuel injection pressure did not affect combustion behaviors but for high injection pressure and low load condition ($P_{inj}$=120 bar and 2 bar IMEP), which was expected weak flow field configuration and low pressure inside the cylinder. In terms of nano particle formation the positions of peak values in particle size distributions were not also changed regardless of the injection pressure, and its number densities were dramatically reduced compared to those of gasoline.

A Study on Intelligent Production Information in Digital Convergence (디지털 컨버전스에서의 지능적 생산정보화에 관한 연구)

  • Lee, Seong-Hoon;Lee, Dong-Woo
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.295-300
    • /
    • 2014
  • In information society, Convergence was combined with a word 'digital'. Digital convergence means a service or new product which appeared through fusion of unit technologies in information and communication regions. The effects of convergence technologies and social phenomenons are visualized in overall regions of society such as economy, society, culture, etc. Nowadays, manufacturing field are facing new challenges, through digital information and global integration, toward sophisticated production. This paper presents the system configuration and issues of current manufacturing execution system(MES), and describes major issues and solving elements to establish a MES system for cloud services. Also, we propose a method for building a manufacturing information system to have the optimized production flow and to respond appropriately to consumer market.

Wake Characteristics of Vane-Type Vortex Generators in a Flat Plate Laminar Boundary Layer

  • Shim, HoJoon;Jo, Young-Hee;Chang, Kyoungsik;Kwon, Ki-Jung;Park, Seung-O
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.325-338
    • /
    • 2015
  • Experimental and numerical investigations were conducted to identify the wake characteristics downstream of two vane-type vortex generators over laminar flat plate boundary layer. Experimental study was carried out by using the stereoscopic particle image velocimetry. To describe the flow field around the vortex generator in detail, numerical study was performed. We considered two different planform shapes of vortex generator: triangular and rectangular shape. The height of the generator was chosen to be about the boundary layer thickness at the position of its installation. Two different lengths of the generator were chosen: two and five times the height. Wake measurements were carried out at three angles of attack for each configuration. Wake characteristics for each case such as overall vortical structure, vorticity distribution, and location of vortex center with downstream distance were obtained from the PIV data. Wake characteristics, as expected, were found to vary strongly with the geometry and angle of attack so that no general tendency could be deduced. Causes of this irregular tendency were explained by using the results of the numerical simulation.

Self-Excited Noise Generation from Laminar Methane/Air Premixed Flames in Thin Annular Jets

  • Kim K. N.;Joung J. H.;Jin S. H.;Chung S. H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.147-155
    • /
    • 2004
  • Self-excited noise generation from laminar flames in thin annular jets of methane/air premixture has been investigated experimentally. Various flames were observed in this flow configuration, including conical shape flames, ring shape flames, steady crown shape flames, and oscillating crown shape flames. Self-excited noise with the total sound pressure level of about 70dB was generated from the oscillating crown shape flames for the equivalence ratio larger than 0.95. Sound pressure and $CH^*$ chemiluminescence were measured by using a microphone and a photomultiplier tube. The frequency of generated noise was measured as functions of equivalence ratio and premixture velocity. A frequency doubling phenomena have also been observed. The flame shape during flame oscillation was reconfirmed by a synchronized PIV experiment. The velocity and pressure field were obtained from PIV. The minimum pressure was formed near the edge of flame representing circulation. By comparing the results of sound pressure, flame luminosity and PIV, the noise source can be attributed to the flame front fluctuation near the edge of the oscillating crown-shape flames.

  • PDF