• Title/Summary/Keyword: Flow-excited Resonator

Search Result 4, Processing Time 0.022 seconds

Control of Sound Pressure Inside a Flow Excited Resonator (유동가진 공명기 내부의 음압 제어)

  • Hwang, Cheol-Ho;Park, Jong-Beom
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.196-199
    • /
    • 2005
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the loading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

  • PDF

Control of Sound Pressure inside a Flow Excited Cavity by Regulation of Vorticity Shedding (와류진동 조절에 의한 유동가진 공동 내부의 음압 제어)

  • Park, Jong-Beom;Hwang, Cheol-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1223-1229
    • /
    • 2007
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the leading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

Numerical Simulation of the Acoustic Field in a Burner with Helmholtz Resonators (헬름홀츠 공진기에 따른 버너내의 음향장에 관한 수치해석)

  • Hong, Jung-Goo;Cho, Han-Chang;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.86-91
    • /
    • 2007
  • A study was performed to understand self-excited pressure fluctuations in the lean premixed flames and to evaluate the effect of Helmholtz resonator on the pressure fluctuations. As low-frequency pressure fluctuations have been reported to cause fatal damage to the combustor and the entire system, Helmholtz-type resonators, which reduce the damage by low-frequency pressure fluctuation in the combustor, are attached to the channel of unburned mixture flow. It is found that the range of low-frequency pressure fluctuations of flame mode 2 is narrowed by the attachment of Helmholtz resonators. From this result, if Helmholtz-type resonators are applied to actual gas turbine combustor, it is confirmed that Helmholtz resonators attached on the fuel discharge hole are also effective for narrowing the range of flame mode 2

  • PDF

Discharge Characteristics of Mini $CO_2$ Laser for Eliminating Enamel Layer (에나멜층 제거를 위한 미니 $CO_2$레이저의 방전특성)

  • Moon, J.G.;Kim, H.Y.;Kim, D.H.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1903-1904
    • /
    • 1997
  • This paper was dealt with the experiments of the traverse flow and excited CW $CO_2$ Laser. The discharge and laser output characteristics of CW $CO_2$ laser has been investigated. A stable resonator was adopted for the power extraction from the length of 0.9m discharge region with the gap length of 15mm. The maximum output power of about 100W was obtained at the first experiment with the total filling pressure of 30torr, $CO_2$ : $N_2$ : He = 1:3:16.

  • PDF