• Title/Summary/Keyword: Flow-delivery

Search Result 389, Processing Time 0.032 seconds

A Study on Effects of Air-delivery Rate upon Drying Rough Rice with Unheated Air. (벼의 자연통풍건조에 있어서 통풍량이 건조에 미치는 영향에 관한 연구)

  • 이상우;정창주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3293-3301
    • /
    • 1974
  • An experimental work was conducted by using a laboratory-made model dryer to investigate the effect of the rate of natural forced-air on the drying rate of rough rice which was deposited in the deep-bed. The dryer consisted of 8 cylinderical containers with grain holding screen at their bottoms, each of which having 30cm in diameter and 15cm in height. The containers were sacked vertically with keeping them air-tight by using paper tape during dryer operation. Two separate layers of containers were operated in the same time to have two replications. The moisture contents of grains within each bins after predetermined period of dryer operation were determined indirectly by measuring the weight of the individual containers. The air-rates were maintained at 6 levels, or 5, 8, 10, 15, 18 and 20 millimenters of static head of water. The roomair conditions during dryer operation were maintained in the range of 10-l5$^{\circ}C$ in temperature and 40-60% in relative humidity. The results of the study are summarized as follows: 1. Drying characteristics of the grains in the bottom layers were approximately the same regardless of airdelivery rates, giving the average drying rate as about 0.35 percent per hour after 40-hour drying period, during which moisture content (w. b.) reduced from 24 percent to about 10 percent. 2. After about 40-hour drying period, the mean drying rates increased from 0.163 percent per hour to 0.263 percent per hour as air-flow rates increased from 5mm to 87.16mm of static head of water. In the same time, the moisture differences of grains between lower and upper layers varied from 12.7 percent at the air rate of 5mm of water head to 7.5 percent at the air-flow rate of 20mn of water head. Thus, the greater the air-flow rate was, the more overall improvement in drying performance was. Additionally, from the result of ineffectiveness of drying grain positioned at 70cm depth or above by the air rate of 5mm of static head of water it may be suggested in practical application that the height of grain deposit would be maintained adequately within the limits of air-rates that may be actually delivered. 3. Drying after layer-turning operation was continued for about 30 hours to test the effectiveness of reducing moisture differences in the thick layers. As a result of this layer-turning operation, moisture distribution through layers approached to narrow ranges, giving the moisture range as about 7 percent at air-flow rate of 5mm head of water, about 3 percent at 10mm head about 2 percent at 15mm head, and less than 1 percent at 20mm head. In addition, from the desirable results that drying rate was rapid in the lower layers and dully in the upper layers, layer-turning operation may be very effective in natural air drying with deep-layer grain deposit, especially when the forced air was kept in low rate. 4. Even though the high rate of air delivery is very desirable for deep-layer natural-air drying of rough rice, it can be happened that the required air delivery rate could not be attained because of limitation of power source available on farms. To give a guide line for the practical application, the power required to perform the drying with the specified air rate was analyzed for different sizes of drying bin and is given in Table (5). If a farmer selects a motor of which size is 1 or {{{{1 { 1} over {2 } }}}} H.P. and air-delivery rate which ranges from 8~10mm of head, the diameter of grain bin may be suggested to choose about 2.4m, also power tiller or other moderate size of prime motor may be recommended when the diameter of grain bin is about 5.0m or more for about 120cm grain deposit.

  • PDF

Analysis of performance test results of CA-certified air cleaners from 2003 to 2015 (2003년부터 2015년까지 CA 인증 공기청정기의 성능 시험 결과 분석)

  • Kim, Hak-Joon;Hong, Kee-Jung;Woo, Chang Gyu;Han, Bangwoo;Kim, Yong-Jin
    • Particle and aerosol research
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • In this study, the test results obtained from the performance tests for CA (Korea Association of Cleaning Air) certificated air cleaners which had been commercially available in Korea from 2003 to 2015 were analyzed. Among the test parameters such as flow rate, particle collection efficiency, clean air delivery rate (CADR), ozone emission, odor removal efficiency and noise level, noise level and CADR were correlated with flow rates. Collection and odor removal efficiencies were 20% higher than the limit of the CA certification. The ozone emissions from the air cleaners were negligible because all the air cleaners were equipped with only HEPA filters, not electrostatic precipitation method which produces ozone.

Transporter Scheduling Based on a Network Flow Model for Dynamic Block Transportation Environment (동적 블록수송환경을 위한 네트워크 흐름모형 기반의 트랜스포터 일정계획)

  • Lee, Woon-Seek;Lim, Won-Il;Koo, Pyung-Hoi
    • IE interfaces
    • /
    • v.22 no.1
    • /
    • pp.63-72
    • /
    • 2009
  • This paper considers a transporter scheduling problem under dynamic block transportation environment in shipbuilding. In dynamic situations, there exist the addition, cancellation or change of block transportation requirements, sudden breakdowns and maintenance of transporters. The transportation of the blocks in the shipyard has some distinct characteristics. Some blocks are available to be picked up at a specific time during the planning horizon while some other blocks need to be delivered before a specific time. These requirements cause two penalty times: 1) delay times incurred when a block is picked up after a required start time, and 2) tardy times incurred when a block shipment is completed after the required delivery time. The blocks are located at different areas in the shipyard and transported by transporters. The objective of this paper is to propose a heuristic algorithm based on a network flow model which minimize the weighted sum of empty transporter travel times, delay times, and tardy times. Also, a rolling-horizon scheduling method is proposed for dynamic block transportation environment. The performance of the proposed heuristic algorithms are evaluated through a simulation experiment.

Development of Constant Delivery Micro Pump in a Variable Pressure Environment for Intrathecal Drug Administration System (레져버에 압력이 가해지는 환경에서의 미소 정량 토출 펌프의 개발)

  • Lee, Tae Gyeong;Lee, Cheol Su;Jung, Yu Seok;Park, Gyeong Geun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.387-394
    • /
    • 2017
  • This paper develops a pump system for patient with chronic pain or cancer. The pump module is consists of two micro-valve and membrane. The micro-valve is operated by a solenoid. With two solenoid valves which are connected via a drug transport line, the inlet and outlet are completely blocked. A silicon rubber membrane located between the two valves makes the flow-rate constant without any backflow. This pump module can control the flow-rate of drugs by controlling the time that the valves are opened and closed. The reservoir consists of a drug chamber and a gas chamber. As the gas chamber encloses the drug chamber, propellant gas which is injected into the gas chamber pressurizes the drug chamber regardless of volume of the drug chamber. To design the pump module, analysis a constant efficiency test, and accuracy test for the pump module were conducted.

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.

Vortex Cavitation from Baffle Plate and Pump Vibration in a Double-Suction Volute Pump

  • Sato, Toshiyuki;Nagahara, Takahide;Tanaka, Kazuhiro;Fuchiwaki, Masaki;Shimizu, Fumio;Inoue, Akira
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.76-83
    • /
    • 2011
  • This study highlights especially the mechanism of vortex cavitation occurrence from the end of the suction duct in a double-suction volute pump and pump oscillation which causes cavitation noise from the pump. In this study, full 3D numerical simulations have been performed using a commercial code inside the pump from the inlet of suction duct to the outlet of delivery duct. The numerical model is based on a combination of multiphase flow equations with the truncated version of the Rayleigh-Plesset model predicting the complicated growth and collapse process of cavity bubbles. The experimental investigations have also been performed on the cavitating flow with flow visualization to evaluate the numerical results.

A Field Application Case of Direct Ice Slurry Transporting System for District Cooling (지역냉방용 직접순환식 아이스슬러리 시스템의 현장적용 사례)

  • Yoo, Ho-Seon;Lee, Sang-Hoon;Lee, Yoon-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.496-504
    • /
    • 2009
  • In order to investigate the feasibility of a direct ice slurry transporting system for the purpose of district cooling, a case study of field application is performed. The research aims include the field measurement of ice packing factor, the performance of coldness delivery, and the branching characteristics of ice slurry. Two representative types of pipe branch are dealt with in this work. For the slurry flow with ice volume fraction of 0.16 or less, the pipe blocking due to aggregation is not observed. Based on the time-wise variation of temperature in the storage tank, a calculating method of ice packing factor is newly developed, which seems to be useful when the brine concentration is unknown. It is confirmed that the mass flow rate of ice slurry per unit cooling load is markedly reduced with increasing the ice content. The pumping power also decreases, but remains unchanged for high ice fractions. The distribution of ice particle before and after branching shows a good uniformity within the range of 5% difference, but yields a unique trend depending on the flow rate.

Coaxial Nozzle Electrospraying of Polymer Solutions: Use of Dispersant Flow (고분자 용액의 동축 이중노즐 전기분무: 분산제 흐름의 사용)

  • Kim, Min-Young;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.254-259
    • /
    • 2011
  • In electrospraying of polymer solutions, metal sample collectors are often ineffective in fully removing solvent from sprayed particles and recovering redispersable sprayed particles. Herein, a novel electro spraying system, where sprayed particles were dispersed into laminar flow of dispersant (coagulation liquid), was designed for the nano-encapsulation of protein drugs. Chitosan and polyacrylic acid were used as the encapsulation materials. Aggregation of particles could be prevented by using this new electrospraying system, and unimodal size distribution was observed at an applied voltage between 4~16 kV and a low flow rate. The effects of the applied voltage on mean particle size were not significant on the other hand.

Multi-objective permutation flow shop scheduling in precast production under consideration of embodied carbon emissions

  • Zhongfu LI;Ruiyan ZHENG
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.25-32
    • /
    • 2024
  • Conventional construction methods face significant challenges in reducing carbon emissions and promoting environmental sustainability. Off-Site Construction (OSC) method is widely recognized as a low-carbon, high-efficiency alternative construction method. However, in practice, it often fails to deliver the expected benefits, leading to issues such as excessive carbon emissions, unpunctual delivery, and cost overruns in OSC projects. In order to ensure the carbon benefits of OSC and further its development,this study conducts an in-depth analysis of embodied carbon emissions in the precast production process, proposes a multi-objective optimization model based on the permutation flow shop scheduling problem, and designs an automated solution algorithm using NSGA-II to derive Pareto optimal schedules. Through the analysis of real-world case data, the proposed approach, compared to conventional scheduling methods, is estimated to reduce embodied carbon emissions by approximately 6 % while simultaneously cutting tardiness/earliness penalty by 75%. This study offers a model for precast production scheduling, effectively enhancing production efficiency and reducing carbon emissions, enabling construction component enterprises to engage in low-carbon, cost-effective, and efficient production, thereby fostering sustainable development in the construction industry.

Fabrication of Frozen Alginate Particles Containing Hypochlorous Acid(HOCl) (차아염소산수(HOCl)를 포함한 알지네이트 냉동 입자의 제작)

  • Jung, Sejin;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.26-32
    • /
    • 2017
  • Hypochlorous acid(HOCl) is a chemical that is a safe sanitizer and disinfectant approved by the Food and Drug Administration as a food additive, exhibiting strong sterilizing power with low effective chlorine concentration of pH 5.0-6.5 and effective chlorine concentration 10-80 ppm. To apply to fishery industries, we develope the HOCl ice for store or delivery of fishery products. However when HOCl is being frozen, the contained HOCl are expelled out from the ice due to the molecular structures of ice; there is no space to contain HOCl inside. To increase chlorine containing amount in ice, we develop the alginate particles containing HOCl which is bio comparable since alginate is a natural polymer extracted from the brown algae and it is widely used for drug delivery and containing substances, etc. We produce HOCl with water as base solution suppressing osmotic flow from fishery products, and mix it with the developed alginate particles and made HOCl-alginate ice and checked the remaining amount of HOCl. We measure the change of pH and chlorine concentration optimizing the best concentration of alginate particles. Finally, we produce the alginate particle HOCl ices with respect to the alginate's optimal concentration.