• 제목/요약/키워드: Flow-Structure Interactions

검색결과 104건 처리시간 0.023초

충격파와 난류 경계층 간섭유동 제어에서의 유동 가시화 (Flow Visualization of Flow Control of the Shock Wave/Turbulent Boundary-Layer Interactions)

  • 이열
    • 한국항공우주학회지
    • /
    • 제31권7호
    • /
    • pp.32-40
    • /
    • 2003
  • 공탄성 플랩을 이용한 충격파와 난류 경계층의 간섭유동 제어에서 유동가시화에 관한 실험적 연구가 수행되었다. 유동 가시화를 위하여 순간 쉐도우 영상, 등유와 흑색안료 혼합물을 이용한 유맥선, 간섭 유동 후방에 적용된 실리콘 오일막의 간섭 줄무늬 형상 등이 얻어졌다. 플랩의 형상과 두께 변화에 의한 영향이 평가되었고 그 결과는 제어되지 않은 일반 평판 위의 충격파 간섭유동의 경우와 비교되었다. 충격파 간섭유동 후방에 적용된 얇은 오일막 표면에 나타나는 간섭무늬로서 이 영역에서의 정성적인 전단응력분포 관찰이 이루어 졌고, 그 결과 간섭유동 후방 중심축 근처에 길고 좁은 박리현상을 동반한 유동의 강한 폭 방향 변화가 관찰되었으며, 이는 이러한 충격파 간섭유동의 강한 3차원 특성을 보여주고 있다. 또한 플랩 하부에 위치한 공동부 형상이 충격파 간섭유동에 미치는 영향도 평가되었고, 그 영향을 무시할 수 없음이 관찰되었다.

Nonlinear aerostatic analysis of long-span suspension bridge by Element free Galerkin method

  • Zamiria, Golriz;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.75-84
    • /
    • 2020
  • The aerostatic stability analysis of a long-span suspension bridge by the Element-free Galerkin (EFG) method is presented in this paper. Nonlinear effects due to wind structure interactions should be taken into account in determining the aerostatic behavior of long-span suspension bridges. The EFG method is applied to investigate torsional divergence of suspension bridges, based on both the three components of wind loads and nonlinearities of structural geometric. Since EFG methods, which are based on moving least-square (MLS) interpolation, require only nodal data, the description of the geometry of bridge structure and boundaries consist of defining a set of nodes. A numerical example involving the three-dimensional EFG model of a suspension bridge with a span length of 888m is presented to illustrate the performance and potential of this method. The results indicate that presented method can effectively be applied for modeling suspension bridge structure and the computed results obtained using present modeling strategy for nonlinear suspension bridge structure under wind flow are encouragingly acceptable.

비 뉴톤 유동 메카니즘에서 틱소트로피 식과 유변 파라메타 (Thixotropic Equation and Rheological Parameters on Non-Newtonian Flow Mechanism)

  • 김남정
    • 한국응용과학기술학회지
    • /
    • 제32권3호
    • /
    • pp.386-393
    • /
    • 2015
  • 콜로이드 분산계와 같은 복잡한 물질의 유변성질은 전단 흐름이 일어날 때 비뉴톤 유동현상을 나타낸다. 이들 유변성질은 유동단위의 성질과 유동 세그먼트 사이의 상호작용에 의하여 영향을 받는다. 유동곡선을 이론적인 틱소트로피식에 적용하여 여러 틱소트로피 유동 곡선에 대한 유동파라메타, 완화시간, $({\beta}_2)_0$, 구조적인 요인, $C_2$, 전단 모듈러스, $X_2/{\alpha}_2$을 구하였다. 유변 파라메타의 변화는 비뉴톤 유동, 점도, 유동 세그먼트의 유동 활성화 에너지와 직접적인 관계가 있다.

Micro-imaging techniques for evaluation of plastic microfluidic chip

  • Kim, Jung-Kyung;Hyunwoo Bang;Lee, Yongku;Chanil Chung;Yoo, Jung-Yul;Yang, Sang-Sik;Kim, Jin-Seung;Park, Sekwang;Chang, Jun-Keun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제1권4호
    • /
    • pp.239-247
    • /
    • 2001
  • The Fluorescence-Activated Cell Sorter (FACS) is a well-established instrument used for identifying, enumerating, classifying and sorting cells by their physical and optical characteristics. For a miniaturized FACS device, a disposable plastic microchip has been developed which has a hydrodynamic focusing chamber using soft lithography. As the characteristics of the spatially confined sample stream have an effect on sample throughput, detection efficiency, and the accuracy of cell sorting, systematic fluid dynamic studies are required. Flow visualization is conducted with a laser scanning confocal microscopy (LSCM), and three-dimensional flow structure of the focused sample stream is reconstructed from 2D slices acquired at $1\mutextrm{m}$ intervals in depth. It was observed that the flow structure in the focusing chamber is skewed by unsymmetrical velocity profile arising from trapezoidal cross section of the microchannel. For a quantitative analysis of a microscopic flow structure, Confocal Micro-PIV system has been developed to evaluate the accelerated flow field in the focusing chamber. This study proposes a method which defines the depth of the measurement volume using a detection pinhole. The trajectories of red blood cells (RBCs) and their interactions with surrounding flow field in the squeezed sample stream are evaluated to find optimal shape of the focusing chamber and fluid manipulation scheme for stable cell transporting, efficient detection, and sorting

  • PDF

도서관 네트워크의 구조적 분석 (A STRUCTURAL ANALYSIS OF INTER-LIBRARY NETWORKS: A REGIONAL ILL NETWORK IN THE WESTERN NEW YORK 3Rs REGION)

  • 유사라
    • 정보관리학회지
    • /
    • 제6권1호
    • /
    • pp.37-56
    • /
    • 1989
  • This study is a structural analysis of a multi-type and multi-level library network within the framework of a regional interlibrary loan (ILL) system. The study monitored to information network structure for resource sharing of academic and research library materials transmitted through the ILL. The local flow of academic and research information was measured by a survey of the filled ILL transactions by individual libraries in the Western 3Rs region. The major findings were as follows: 1) the regional ILL network showed less than half of participation of the total subject libraries, 2) existing structure surveyed was identified as a composite centralized network with three communication groups, 3) depending on the types of materials transacted, the structure were changed, 4) statewide and multi-state library cooperatives had direct interactions with some of the local libraries, 5) individual libraries participated in the ILL network more for periodicals than book materials, 6) academic libraries throughout the total six structure analyzed showed the highest percentage of participation.

  • PDF

Hydro-structural issues in the design of ultra large container ships

  • Malenica, Sime;Derbanne, Quentin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.983-999
    • /
    • 2014
  • The structural design of the ships includes two main issues which should be checked carefully, namely the extreme structural response (yielding & buckling) and the fatigue structural response. Even if the corresponding failure modes are fundamentally different, the overall methodologies for their evaluation have many common points. Both issues require application of two main steps: deterministic calculations of hydro-structure interactions for given operating conditions on one side and the statistical post-processing in order to take into account the lifetime operational profile, on the other side. In the case of ultra large ships such as the container ships and in addition to the classical quasi-static type of structural responses the hydroelastic structural response becomes important. This is due to several reasons among which the following are the most important: the increase of the flexibility due to their large dimensions (Lpp close to 400 m) which leads to the lower structural natural frequencies, very large operational speed (> 20 knots) and large bow flare (increased slamming loads). The correct modeling of the hydroelastic ship structural response, and its inclusion into the overall design procedure, is significantly more complex than the evaluation of the quasi static structural response. The present paper gives an overview of the different tools and methods which are used in nowadays practice.

유체-구조 상호작용을 적용한 튜브다발의 유체탄성불안정성 과도적 전산해석 (Multi-Physics Simulations of Fluidelastic Instability for Tube Bundles in Cross-Flow)

  • 이민형;김용찬
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.174-180
    • /
    • 2004
  • Failure of tube bundles due to excessive flow-induced vibrations continues to affect the performance of nuclear power plant Early experimental studies concentrated on rigid structures and later investigators dealt with elastic structures because of their importance in many engineering fields. On the other hand, much less numerical work has been carried out, because of the numerical complexity associated with the problem. Conventional approaches usually decoupled the flow solution from the structural problem. The present numerical study proposes the methodology in analyzing the fluidelastic instability occurring in tube bundles by coupling the Computational fluid Dynamics (C%) with the tube equation of motions. The motion of the structures is modeled by a spring-damper-mass system that allows transnational motion in two directions (a two-degree-of-freedom system). The fluid motion and the cylinder response are solved in an iterative way, so that the interaction between the fluid and the structure can be accounted for property. The aim of the present work is to predict the fluidelstic instability of tube bundles and the associated phenomena, such as the response of the cylinder, the unsteady lift and drag on the cylinder, the vortex shedding frequency.

Large-eddy simulation and wind tunnel study of flow over an up-hill slope in a complex terrain

  • Tsang, C.F.;Kwok, Kenny C.S.;Hitchcock, Peter A.;Hui, Desmond K.K.
    • Wind and Structures
    • /
    • 제12권3호
    • /
    • pp.219-237
    • /
    • 2009
  • This study examines the accuracy of large-eddy simulation (LES) to simulate the flow around a large irregular sloping complex terrain. Typically, real built up environments are surrounded by complex terrain geometries with many features. The complex terrain surrounding The Hong Kong University of Science and Technology campus was modelled and the flow over an uphill slope was simulated. The simulated results, including mean velocity profiles and turbulence intensities, were compared with the flow characteristics measured in a wind tunnel model test. Given the size of the domain and the corresponding constraints on the resolution of the simulation, the mean velocity components within the boundary layer flow, especially in the stream-wise direction were found to be reasonably well replicated by the LES. The turbulence intensity values were found to differ from the wind tunnel results in the building recirculation zones, mostly due to the constraints placed on spatial and temporal resolutions. Based on the validated mean velocity profile results, the flow-structure interactions around these buildings and the surrounding terrain were examined.

EDISON_전산열유체를 활용한 풍력발전기 타워의 후류 불안정성 억제에 관한 수치연구 (NUMERICAL ANALYSIS FOR SUPPRESSING UNSTEADY WAKE FLOW ON WIND TURBINE TOWER USING EDISON_CFD)

  • 김수용;진도현;이근배;김종암
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.36-42
    • /
    • 2013
  • The performance of the wind turbine is determined by wind speed and unsteady flow characteristics. Unsteady wake flow causes not only the decline in performance but also structural problems of the wind turbine. In this paper, conceptual designs for the wind turbine tower are conducted to minimize unsteady wake flow. Numerical simulations are performed to inspect the shape effect of the tower. Through the installation of additional structures at the rear of the tower, the creation of Karman vortex is delayed properly and vortex interactions are reduced extremely, which enhance the stability of the wind turbine. From the comparative analysis of lift and drag coefficients for each structure, it is concluded that two streamwise tips with a splitter plate have the most improved aerodynamic characteristics in stabilizing wake flow.

고체로켓모터 표면분사 시험모델의 유동 가시화 (Visualization of Internal Flows in the Wall-injected Test Model of a SRM)

  • 김도헌;이인철;구자예;조용호;강문중;김윤곤
    • 한국추진공학회지
    • /
    • 제15권3호
    • /
    • pp.31-39
    • /
    • 2011
  • 핀/슬롯 그레인 및 내삽노즐을 가진 고체로켓모터 내부와 동일한 기하학적 형상을 가진 표면분사 시험모델을 사용하여 연소유동장을 모사하고, 스모크 와이어를 이용하여 유동장을 가시화하였다. 그레인 전방부 투영창을 통해 촬영하는 기법 등에 이용하여 획득된 내삽노즐 선단 인접부의 반경방향 평면상에서의 유동가시화 이미지 분석을 통해, 슬롯출구 반경방향유동, 핀베이스 축방향유동 및 상류그레인포트 축방향유동의 상호 전단작용에 의한 반경방향 운동량 전달이 노즐 인접부에서의 선회류 유동 및 와류튜브 구조를 발생시키는 것으로 나타났다.