• Title/Summary/Keyword: Flow rule

Search Result 368, Processing Time 0.029 seconds

Development of pneumatic servo control algorithm using fuzzy rule (Fuzzy rule을 이용한 공압 서보 제어 알고리즘의 개발)

  • 박상덕;정규원;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1127-1132
    • /
    • 1991
  • Pneumatic control system has been used mainly for endpoint position control because of the compressibility, viscosity and low output stiffness of air which causes nonlinear flow characteristics. In this paper, pneumatic position control algorithms using fuzzy rule were developed to achieve faster and more stable response than conventional PI control algorithm. The performances of the proposed algorithms were compared by computer simulations with them of PI controller. From those simulations it was shown that the proposed algorithms are more efficient about settling time, steady state error and overshoot than PI control algorithm.

  • PDF

Collapse mechanism of tunnel roof considering joined influences of nonlinearity and non-associated flow rule

  • Yang, X.L.;Xu, J.S.;Li, Y.X.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • Employing non-associated flow rule and Power-Law failure criterion, the failure mechanisms of tunnel roof in homogeneous and layered soils are studied in present analysis. From the viewpoint of energy, limit analysis upper bound theorem and variation principle are introduced to study the influence of dilatancy on the collapse mechanism of rectangular tunnel considering effects of supporting force and seepage force. Through calculation, the collapsing curve expressions of rectangular tunnel which are excavated in homogeneous soil and layered soils respectively are derived. The accuracy of this work is verified by comparing with the existing research results. The collapsing surface shapes with different dilatancy coefficients are draw out and the influence of dilatancy coefficient on possible collapsing range is analyzed. The results show that, in homogeneous soil, the potential collapsing range decreases with the decrease of the dilatancy coefficient. In layered soils, the total height and the width on the layered position of possible collapsing block increase and the width of the falling block on tunnel roof decrease when only the upper soil's dilatancy coefficient decrease. When only the lower soil's dilatancy coefficient decrease or both layers' dilatancy coefficients decrease, the range of the potential collapsing block reduces.

A FINITE-VISCOELASTIC CONTINUUM MODEL FOR RUBBER AND ITS FINITE ELEMENT ANALYSIS

  • Kim, Seung-Jo;Kim, Kyeong-Su;Cho, Jin-Yeon
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.97-109
    • /
    • 1995
  • In this paper, a finite viscoelastic continuum model for rubber and its finite element analysis are presented. This finite viscoelatic model based on continuum mechanics is an extended model of Johnson and Wuigley's 1-D model. In this extended model, continuum based kinematic measures are rigorously defied and by using this kinematic measures, elastic stage law and flow rule are introduced. In kinematics, three configuration are introduced. In kinematics, three configuration are introduced. They are reference, current and virtual visco configurations. In elastic state law, it is assumed that at a certain time, there exists an elastic potential which describes the recoverable elastic energy. From this elastic potential, elastic state law is derived. The proposed flow rule is based on phenomenological observation. The flow rule gives precise relaxation response. In finite element approximation, mixed Lagrangian description is used, where total and similar method of updated Lagrangian descriptions are used together. This approach reduces the numerical job and gives simple nonlinear syatem of equations. To satisfy the incompressible condition, penalty-type modified Mooney-Rivlin energy function is adopted. By this method nearly incompressible condition is obtain the virtual visco configuration. For verification, uniaxial stretch tests are simulated for various stretch rates. The simulated results show good agreement with experiments. As a practical experiments. As a preactical example, pressurized rubber plate is simulated. The result shows finite viscoelastic effects clearly.

Evaluating Future Stream Flow by Operation of Agricultural Reservoir Group considering the RCP 8.5 Climate Change Scenario (RCP 8.5 기후변화 시나리오를 고려한 농업용 저수지군 운영에 따른 미래 하천유량 평가)

  • Lee, Jaenam;Noh, Jaekyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.113-122
    • /
    • 2015
  • This study aims to evaluate future stream flow by the operation of agricultural reservoir group at the upper stream of the Miho River. Four agricultural reservoirs with storage capacities greater than one million cubic meters within the watershed were selected, and the RCP 8.5 climate change scenario was applied to simulate reservoir water storage and stream flow assuming that there are no changes in greenhouse gas reduction. Reservoir operation scenarios were classified into four types depending on the supply of instream flow, and the water supply reliability of each reservoir in terms of water supply under different reservoir operation scenarios was analyzed. In addition, flow duration at the watershed outlet was evaluated. The results showed that the overall run-off ratio of the upper stream watershed of the Miho River will decrease in the future. The future water supply reliability of the reservoirs decreased even when they did not supply instream flow during their operation. It would also be difficult to supply instream flow during non-irrigation periods or throughout the year (January-December); however, operating the reservoir based on the operating rule curve should improve the water supply reliability. In particular, when instream flow was not supplied, high flow increased, and when it was supplied, abundant flow, ordinary flow, and low flow increased. Drought flow increased when instream flow was supplied throughout the year. Therefore, the operation of the agricultural reservoirs in accordance with the operating rule curve is expected to increase stream flow by controlling the water supply to cope with climate change.

Hybrid Flow Shop with Parallel Machines at the First Stage and Dedicated Machines at the Second Stage

  • Yang, Jaehwan
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.22-31
    • /
    • 2015
  • In this paper, a two-stage hybrid flow shop problem is considered. Specifically, there exist identical parallel machines at stage 1 and two dedicated machines at stage 2, and the objective of the problem is to minimize makespan. After being processed by any machine at stage 1, a job must be processed by a specific machine at stage 2 depending on the job type, and one type of jobs can have different processing times on each machine. First, we introduce the problem and establish complexity of several variations of the problem. For some special cases, we develop optimal polynomial time solution procedures. Then, we establish some simple lower bounds for the problem. In order to solve this NP-hard problem, three heuristics based on simple rules such as the Johnson's rule and the LPT (Longest Processing Time first) rule are developed. For each of the heuristics, we provide some theoretical analysis and find some worst case bound on relative error. Finally, we empirically evaluate the heuristics.

Finite Element Analysis of P/M Connecting Rod Forging (분말컨넥팅로드 단조의 유한 요소 해석)

  • Park, Jong-Jin
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 1992
  • Sintered P/M connecting rod is forged to increase density and to satisfy dimensional specifications. Flow of the materials is different form that of wrought materials due to pores in the preform. The Mises yield function was modified to. include the first invariant of stress tensor, and the associated flow rule was derived by applying the normality rule to the yield function. Axisymmetric and plane-strain finite element analyes were carried out for the ring and beam portions of the connecting rod, respectively. The flow of the preform and density change of the analysis are presented in this paper. A load-stroke curve was also presented by superimposing analysis results for the ring and beam portions.

  • PDF

Relationship between Steady Flow and Dynamic Rheological Properties for Viscoelastic Polymer Solutions - Examination of the Cox-Merz Rule Using a Nonlinear Strain Measure - (점탄성 고분자 용액의 정상유동특성과 동적 유변학적 성질의 상관관계 -비선헝 스트레인 척도를 사용한 Cox-Merz 법칙의 검증-)

  • 송기원;김대성;장갑식
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.234-246
    • /
    • 1998
  • The objective of this study is to investigate the correlation between steady shear flow (nonlinear behavior) and dynamic viscoelastic (linear behavior) properties for concentrated polymer solutions. Using both an Advanced Rheometic Expansion System(ARES) and a Rheometics Fluids Spectrometer (RFS II), the steady shear flow viscosity and the dynamic viscoelastic properties of concentrated poly(ethylene oxide)(PEO), polyisobutylene(PIB), and polyacrylamide(PAAm) solutions have been measured over a wide range of shear rates and angular frequencies. The validity of some previously proposed relationships was compared with experimentally measured data. In addition, the effect of solution concentration on the applicability of the Cox-Merz rule was examined by comparing the steady flow viscosity and the magnitude of the complex viscosity Finally, the applicability of the Cox-Merz rule was theoretically discussed by introducing a nonlinear strain measure. Main results obtained from this study can be summarized as follows : (1) Among the previously proposed relationships dealt with in this study, the Cox-Merz rule implying the equivalence between the steady flow viscosity and the magnitude of the complex viscosity has the best validity. (2) For polymer solutions with relatively lower concentration, the steady flow viscosity is higher than the complex viscosity. However, such a relation between the two viscosities is reversed for highly concentrated polymer solutions. (3) A nonlinear strain measure is decreased with increasing stran magnitude, after reaching the maximum value in small strain range. This behavior is different from the theoretical prediction demonstrating the shape of a damped oscillatory function. (4) The applicability of the Cox-Merz rule is influenced by the $\beta$ value, which indicates the slope of a nonlinear stain measure (namely, the degree of nonlinearity) at large shear deformations. The Cox-Merz rule shows better applicability as the $\beta$ value becomes smaller.

  • PDF

A study on the building site excavated in the Oeseonmi-ri, Uljin (울진 외선미리 발굴 건물지에 관한 연구)

  • Kim, Chan-Yeung
    • Journal of architectural history
    • /
    • v.16 no.2
    • /
    • pp.79-98
    • /
    • 2007
  • The building site was presumed as the Howonjeokwon or the Dasiwonji established at the traffic route among western inland areas in old Pyeonghaegun. The groundwork was composed inclination terrace of two steps. The upper step was the territory of the main house of ceremony symbolic+lodging function and the down step was divided in the territory of both Ikrang-chae of boarding and lodging management function and the territory of Haengrang-chae pavilion of rest reception management. The building composition by each territory formed space differentiation with the line of flow according to the thorough rule of court rank. The arrangement composition set the strong center axis in tandem, and it was the building arrangement interpreting the territory and the rule of court rank by function as the relationship of master and servant and was the building type emphasizing on the whole unity with the geometric symmetry structure. The Dasiwonji and the Hyeeumwonji had the common point which is the traffic architecture of semi governmental management reinforcing the boarding lodging function in the place which a visitor stayed. The Haeeumwonji and Dasiwonji had the difference in the size, but was the same in the composition system of construction. The external space and the system of the line of flow decided from the functional territory separation and the hierarchical rank as thorough as the geometric arrangement focusing on the whole unity. Namely, it was the strict and unusual system of the line of flow depended on the thorough rule of court rank than the efficient approach or arrangement of the line of flow. After being established to be the Howonjeokwon at the end of Koryeo, it disappeared at the time of the invasion of Japanese pirates when it was the time of the King Woo in Koryeo. It is presumed that it was continued until both wars, Imjin Byeongja, ago after changing its name to the Dasiwon, being restored to the small size at the end of Koryeo at the early of Choseon.

  • PDF

Thermal Behavior of Flow Pattern Defect and Large Pit in Czochralski Silicon Crystals and Effects of Large Pit upon Device Yield (쵸크랄스키 Silicon 단결정의 Large Pit과 Flow Pattern defect의 열적 거동과 Large Pit의 소자 수율에의 영향)

  • Song, Yeong-Min;Mun, Yeong-Hui;Kim, Jong-O;Jo, Gi-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.781-785
    • /
    • 2001
  • The thermal behavior of Flow Pattern Defect (FPD) and Large Pit (LP) in Czochralski Silicon crystal was investigated by applying high temperature annealing ($\geq$$1100^{\circ}C$) and non-agitated Secco etching. For evaluation of the effect of LP upon device performance/yield, commercial DRAM and ASIC devices were fabricated. The results indicated that high temperature annealing generates LPs whereas it decreases FPD density drastically. However, the origins of FPD and LP seemed to be quite different by not showing any correspondence to their density and the location of LP generation and FPD extinction. By not showing any difference between the performance/yield of devices whose design rule is larger than 0.35 $\mu\textrm{m}$, LP seemed not to have detrimental effects on the performance/yield.

  • PDF

A constitutive model for fiber-reinforced extrudable fresh cementitious paste

  • Zhou, Xiangming;Li, Zongjin
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.371-388
    • /
    • 2011
  • In this paper, time-continuous constitutive equations for strain rate-dependent materials are presented first, among which those for the overstress and the consistency viscoplastic models are considered. By allowing the stress states to be outside the yield surface, the overstress viscoplastic model directly defines the flow rule for viscoplastic strain rate. In comparison, a rate-dependent yield surface is defined in the consistency viscoplastic model, so that the standard Kuhn-Tucker loading/unloading condition still remains true for rate-dependent plasticity. Based on the formulation of the consistency viscoplasticity, a computational elasto-viscoplastic constitutive model is proposed for the short fiber-reinforced fresh cementitious paste for extrusion purpose. The proposed constitutive model adopts the von-Mises yield criterion, the associated flow rule and nonlinear strain rate-hardening law. It is found that the predicted flow stresses of the extrudable fresh cementitious paste agree well with experimental results. The rate-form constitutive equations are then integrated into an incremental formulation, which is implemented into a numerical framework based on ANSYS/LS-DYNA finite element code. Then, a series of upsetting and ram extrusion processes are simulated. It is found that the predicted forming load-time data are in good agreement with experimental results, suggesting that the proposed constitutive model could describe the elasto-viscoplastic behavior of the short fiber-reinforced extrudable fresh cementitious paste.