• Title/Summary/Keyword: Flow pulsation

Search Result 187, Processing Time 0.029 seconds

The Characteristics of Pressure Pulsation according to Operating Condition of a S.I Engine for Motorcycle (이륜차용 Sl엔진의 운전 조건에 따른 맥동 특성)

  • Lee Kihyung;Nam Hosung;Kim Yongla;Bae Jaeil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.10-16
    • /
    • 2005
  • Recently, the international regulations about the exhaust emissions of the motorcycle have been strengthened. The electrically controlled fuel injection type motorcycle has been emphasized to meet with this regulation. However, since the pulsation phenomenon happens in the intake port of the motorcycle because of the characteristic of high speed and the smaller layout than the passenger car, there are many difficulties to select the factor about control parameters needed to develop the ECU system. In this paper, the pulsation values measured from the engine test were compared with the calculated one by WAVE, and it was analyzed the pulsation characteristic according to the driving condition and estimated the mass flow rate. This research showed that the lowest point of the pressure gets lowin the low load and the pulsation of pressure were increased in the high load. Also, the simulation program was verified by showing good prediction of the pulsation and air mass flow rate.

Effect of Gas Density on Self-Pulsation in Liquid-Gas Swirl Coaxial Injector (액체-기체 와류동축형 분사기의 자기-맥동에 대한 기체 밀도의 영향)

  • Ahn, Jonghyeon;Kang, Cheolwoong;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.134-143
    • /
    • 2022
  • When a recess is applied to a swirl coaxial injector that uses liquid and gas propellants, a self-pulsation phenomenon in which the spray oscillates at regular intervals may occur. The phenomenon is caused by the interaction between the liquid and gas propellants inside the injector recess region. The propellants' kinetic energies are expected to affect significantly the spray oscillation. Therefore, cold-flow tests using helium as a gas-simulating propellant were conducted and compared with the results of the previous study using air. Dynamic pressure was measured in the injector manifold and frequency characteristics were investigated through the fast Fourier transform analysis. In the experimental environment, the helium density was about seven times lower than the air density. Accordingly, the intensity of pressure fluctuations was confirmed to be greater when air was used. At the same kinetic energy condition, the perturbation frequency was almost identical in the low flow rate conditions. However, as the flow rate increased, the self-pulsation frequency was higher when helium was used.

Flow Analysis in Positive Displacement Micro-Hydro Turbine and Development of Low Pulsation Turbine

  • Kurokawa, Junichi;Matsui, Jun;Choi, Young-Do
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.76-85
    • /
    • 2008
  • In order to extract micro hydropower in the very low specific speed range, a Positive Displacement Turbine (PDT) was proposed and steady performance was determined experimentally. However, the suppression of large pressure pulsation is inevitable for practical application of PDT. The objective of the present study is to reveal the mechanism and the characteristics of pressure pulsation in PDT by use of CFD and to suppress the pressure pulsation. Unsteady CFD analysis has revealed that large pressure pulsation is caused by large variation of rotational speed of the following rotor, while the driving rotor, which is output rotor, keeps constant speed. Here is newly proposed a 4-lobe helical type rotor which can reduce the pressure pulsation drastically and the performance prediction of new PDT is determined.

Study on self-pulsation characteristics of gas centered shear coaxial injector for supercavitating underwater propulsion system

  • Yoon, Jung-Soo;Chung, Jae-Mook;Yoon, Young-Bin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.286-292
    • /
    • 2011
  • In order to design a shear coaxial injector of solid particles for underwater propulsion system, basic experiments on gas-liquid shear coaxial injector are necessary. In the gas-liquid coaxial injector self-pulsation usually occurs with an intense scream. When self-pulsation occurs, mass flow rate oscillation and intense scream are detected by the interactions between the liquid and gas phase. Self-pulsation must be suppressed since this oscillation may cause combustion instabilities. Considerable research has been conducted on self-pulsation characteristics, but these researches are conducted in swirl coaxial injector. The main objective of this research is to understand the characteristics of self-pulsation in shear coaxial injector and reveal the mechanism of the phenomenon. Toward this object, self-pulsation frequency and spray patterns are measured by laser diagnostics and indirect photography. The self-pulsation characteristics of shear coaxial injector are studied with various injection conditions, such as the pressure drop of liquid and gas phase, and recess ratio. It was found that the frequency of the self-pulsation is proportional to the liquid and gas Reynolds number, and proportional to the L/d.

Heat Transfer Characteristics of the Interaction Between Bulk Flow Pulsation and a Vortex Embedded in a Turbulent Boundary Layer (주유동 맥동과 경계층 와류의 상호작용이 벽면 열전달에 미치는 영향)

  • Gang, Sae-Byeol;Maeng, Du-Jin;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.381-388
    • /
    • 2001
  • Presented are heat data which describe the effect of interaction between bulk flow pulsations and a vortex embedded in a turbulent boundary layer. The pulsation frequencies are 3 Hz, 15 Hz and 30 Hz. A half delta wing with the same height as the boundary layer thickness is used to generate the vortex flow. The convection heat transfer coefficients on a constant heat-flux surface are measured by embedded 77 T-type thermocouples. Spanwise profiles of convection heat transfer coefficients show that upwash region of vortex flow is influenced by bulk flow pulsations. The local heat transfer coefficient increases approximately by 7 percent. The increase in the local change of convection heat transfer coefficient is attributed to the spanwise oscillatory motion of vortex flow especially at the low Strouhal number and to the periodic change of vortex size.

Pressure/Flow Pulsation Characteristics of the Hydraulic System for Behaviour Prediction of the Prefill Valve (프리필 밸브의 거동 예측용 유압 시스템의 압력/유량 맥동 분석)

  • Park, Jeong Woo;Khan, Haroon Ahmad;Jeong, Eun-A;Kwon, Sung-Ja;Yun, So-Nam;Lee, Hue-Sung
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2021
  • In this work, a circuit with a hydraulic power unit is formulated as a means of predicting the behavior of the prefill valve in the future. The behavior of the prefill valve can be examined by the measurements of the configured power unit, and the performance is determined by using hydraulic pumps, relief valves, and hydraulic hoses that make up the power unit. In particular, pressure/flow pulsation generated by hydraulic pumps can cause instability in the prefill valve and cause noise-induced degradation of the overall performance and reliability of the hydraulic system containing the prefill valve. Therefore, to study the behavior and performance of the prefill valve in a relatively accurate manner, the prediction of the characteristics of the hydraulic power unit driving the prefill valve is very important. In this study, the pulsation characteristics of the hydraulic pump were analyzed to theoretically demonstrate its relationship with different settings of the power unit, such as relief valve pressure settings and the presence/absence of the hose.

A Study on the Gas Pulsation in a Rotary Compressor (로타리 압축기의 가스맥동에 관한 연구)

  • 김현진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.648-655
    • /
    • 2002
  • For a discharge system of rotary compressor, analytical investigation on the discharge gas pulsation has been carried out. With the aid of four pole theory, acoustic impedance of the discharge system composed of muffler and cavities on both sides of motor with gas passages between them can be calculated using discrete acoustic elements described by transfer matrices, yielding the relationship between discharge mass flow rate and gas pulsation at the discharge port. This method of predicting the gas pulsation was validated by measurement data. Effects of change in discharge muffler geometries on the gas pulsation also were investigated, demonstrating that this method can be used for muffler design.

Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow (맥동하는 유체를 포함하는 3차원 배관 계의 진동 해석)

  • Seo, Young-Soo;Jeong, Weui-Bong;Yoon, Sang-Don
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.933-938
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes causes severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into consideration of fluid-structure interaction.

  • PDF

Vibration Analysis of A 3-Dimensional Pipe Conveying Pulsating Fluid Flow (맥동하는 유체를 포함하는 3차원 배관계의 진동해석)

  • Seo, Young-Soo;Jeong, Weui-Bong;Yoon, Sang-Don
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.391.1-391
    • /
    • 2002
  • A pulsation of fluid in a pipe sometimes cause severe vibration of pipe. The inertia, damping and stiffness characteristics of pipe will be changed by the effect of fluid-structure interaction. The velocity and pressure of fluid will impose the force to a bended shape pipe. In this paper, a pipe with fluid flow is modeled by finite element method and the fluid force from pulsation is also modeled by the fluid dynamics. The vibration of pipe conveying pulsating fluid flow can be estimated by taking into considering of fluid-structure interaction.

  • PDF

A Numerical Analysis on Pressure Pulsation with Turbo Fan Shape (Turbo Fan 형상에 따른 맥동압력에 관한 수치해석)

  • Yi, Chung-Seub;Suh, Jeong-Se;Song, Chul-Ki;Hong, Jeong-Kyu;Shin, You-In
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1355-1360
    • /
    • 2009
  • This study simulates the flow characteristics of the turbo-fan which was applied to the industrial scale. Numerical analysis has been carried out to investigate a pulsation behavior of exhaust air that flow out the turbo fan, considering a constant rotating rate of impeller. Moving mesh technique provides time-accurate solutions for the flow inside an impeller. From the numerical results, FFT analysis has been made for pressure pulsations inside turbo-fan casing. The numerical simulation shows the pulsation of model-2 has higher than model. Additionally, BPF value is almost same as the numerical results.

  • PDF